login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100406
a(n) = repeating period of the digital roots of the sequence {m^n, m=1,2,3...}.
3
1, 124875, 9, 147, 157842, 9, 174, 18, 9, 1, 124875, 9, 147, 157842, 9, 174, 18, 9, 1, 124875, 9, 147, 157842, 9, 174, 18, 9, 1, 124875, 9, 147, 157842, 9, 174, 18, 9, 1, 124875, 9, 147, 157842, 9, 174, 18, 9, 1, 124875, 9, 147, 157842, 9, 174, 18, 9, 1
OFFSET
1,2
COMMENTS
Sequence has period 9.
FORMULA
G.f.: -x*(9*x^8+18*x^7+174*x^6+9*x^5+157842*x^4+147*x^3+9*x^2+124875*x+1) / ((x-1)*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Jun 25 2014
EXAMPLE
The digital roots of 1^n are 1,1,1,1,1,1,.. so 1 is the repeating decimal period for 1^n.
The digital roots of 2^n are 1,2,4,8,7,5.. so 124875 is the repeating decimal period for 2^n.
The digital roots of 3^n are 1,3,9,9,9,9,.. so 9 is the repeating decimal period for 3^n.
MATHEMATICA
CoefficientList[Series[-(9 x^8 + 18 x^7 + 174 x^6 + 9 x^5 + 157842 x^4 + 147 x^3 + 9 x^2 + 124875 x + 1)/((x - 1) (x^2 + x + 1) (x^6 + x^3 + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 26 2014 *)
PadRight[{}, 100, {1, 124875, 9, 147, 157842, 9, 174, 18, 9}] (* Harvey P. Dale, Mar 29 2019 *)
PROG
(PARI) f(n, m) = for(x=0, n, print1(droot(m^x)", ")) droot(n) = \ the digital root of a number. { local(x); x= n%9; if(x>0, return(x), return(9)) }
(PARI) Vec(-x*(9*x^8+18*x^7+174*x^6+9*x^5+157842*x^4+147*x^3+9*x^2+124875*x+1) / ((x-1)*(x^2+x+1)*(x^6+x^3+1)) + O(x^100)) \\ Colin Barker, Jun 25 2014
CROSSREFS
Sequence in context: A261439 A182658 A282919 * A351948 A341115 A183797
KEYWORD
easy,nonn,base
AUTHOR
Cino Hilliard, Dec 31 2004
EXTENSIONS
Offset corrected by Nathaniel Johnston, May 05 2011
STATUS
approved