The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A341115 Numbers k such that k*2^101 + 1 is a prime factor of 10^(10^100) + 1. 1
 125000, 61298400, 578869250, 4511718750, 195312500000, 2918554687500, 3874552343750 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Every prime factor of 10^(10^100) + 1 is of the given form (k == 1 (mod 2^101)). If k is not divisible by 10, then k == 1,3,4 (mod 10), and k*2^101 + 1 divides 10^(2^100) + 1. If 1 <= j <= 99 and k is not divisible by 5^(j+1), then k*2^101 + 1 divides 10^(2^100*5^j) + 1. No other terms below 4*10^12. Other known terms in this sequence are 397299146187500, 194585800170898437500, 3163315773010253906250, 3274180926382541656494140625000, 128238752949982881546020507812500, 13940493204245285596698522567749023437500, 61902333925445418572053313255310058593750, 146251500493521646717454132158309221267700195312500. LINKS D. A. Alpern, Factors of 1000 numbers starting from googolplex EXAMPLE The smallest prime factor of 10^10^100 + 1 is 125000*2^100 + 1 = 316912650057057350374175801344000001. PROG (Python) A341115_list, k, m, l, n = [], 1, 2**101, 2**101+1, 10**100 while k < 10**6:     if pow(10, n, l) == l-1:         A341115_list.append(k)         print(len(A341115_list), k)     k += 1     l += m # Chai Wah Wu, Mar 28 2021 CROSSREFS Cf. A341116 (corresponding primes), A072288. Sequence in context: A182658 A282919 A100406 * A183797 A234783 A206134 Adjacent sequences:  A341112 A341113 A341114 * A341116 A341117 A341118 KEYWORD nonn,fini,hard,more AUTHOR Yan Sheng Ang, Feb 05 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 21:17 EDT 2021. Contains 348065 sequences. (Running on oeis4.)