login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160974 Number of partitions of n where every part appears at least 4 times. 4
1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 4, 2, 4, 4, 7, 5, 8, 7, 13, 10, 13, 12, 21, 18, 22, 21, 34, 29, 40, 36, 55, 48, 63, 64, 88, 79, 100, 99, 139, 125, 160, 155, 207, 199, 241, 241, 314, 302, 369, 366, 466, 454, 550, 557, 690, 679, 807, 821, 1016, 1001, 1180, 1207, 1460, 1466, 1708 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms  n=1..967 from R. H. Hardin)

FORMULA

G.f.: Product_{j>=1} (1+x^(4*j)/(1-x^j)). - Emeric Deutsch, Jun 24 2009

a(n) ~ sqrt(Pi^2 + 6*c) * exp(sqrt((2*Pi^2/3 + 4*c)*n)) / (4*sqrt(3)*Pi*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-4*x)) dx = -0.903005550655893892139378653023287247062261773608753265529... . - Vaclav Kotesovec, Jan 05 2016

EXAMPLE

a(12) = 4 because we have 3333, 2^6, 22221111, and 1^(12). - Emeric Deutsch, Jun 24 2009

MAPLE

g := product(1+x^(4*j)/(1-x^j), j = 1..30): gser := series(g, x = 0, 85): seq(coeff(gser, x, n), n = 0..66); # Emeric Deutsch, Jun 24 2009

# second Maple program:

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

      add(b(n-i*j, i-1), j=[0, $4..iquo(n, i)])))

    end:

a:= n-> b(n$2):

seq(a(n), n=0..80);  # Alois P. Heinz, Oct 02 2017

MATHEMATICA

nmax = 100; Rest[CoefficientList[Series[Product[1 + x^(4*k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 28 2015 *)

CROSSREFS

Cf. A007690, A100405, A160975-A160990.

Sequence in context: A161079 A161295 A161270 * A187718 A029196 A051493

Adjacent sequences:  A160971 A160972 A160973 * A160975 A160976 A160977

KEYWORD

nonn

AUTHOR

R. H. Hardin, Jun 01 2009

EXTENSIONS

Initial terms changed to match b-file. - N. J. A. Sloane, Aug 31 2009

Maple program fixed by Vaclav Kotesovec, Nov 28 2015

a(0)=1 prepended by Alois P. Heinz, Oct 02 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 8 08:48 EDT 2020. Contains 333313 sequences. (Running on oeis4.)