login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029196
Expansion of 1/((1-x^2)(1-x^5)(1-x^6)(1-x^10)).
1
1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 2, 5, 2, 5, 4, 7, 5, 8, 5, 11, 7, 13, 8, 14, 11, 17, 13, 19, 14, 24, 17, 27, 19, 29, 24, 34, 27, 37, 29, 44, 34, 49, 37, 52, 44, 59, 49, 64, 52, 73, 59, 80, 64, 85, 73, 94, 80, 101, 85, 113, 94
OFFSET
0,7
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 0, 1, 1, -1, -1, 0, 1, -1, -1, 1, 0, -1, -1, 1, 1, 0, 0, 1, 0, -1).
FORMULA
G.f.: 1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^10)).
a(0)=1, a(1)=0, a(2)=1, a(3)=0, a(4)=1, a(5)=1, a(6)=2, a(7)=1, a(8)=2, a(9)=1, a(10)=4, a(11)=2, a(12)=5, a(13)=2, a(14)=5, a(15)=4, a(16)=7, a(17)=5, a(18)=8, a(19)=5, a(20)=11, a(21)=7, a(22)=13, a(n)=a(n-2)+ a(n-5)+ a(n-6)-a(n-7)-a(n-8)+a(n-10)-a(n-11)-a(n-12)+a(n-13)-a(n-15)- a(n-16)+ a(n-17)+a(n-18)+a(n-21)-a(n-23). - Harvey P. Dale, Jan 25 2013
MATHEMATICA
CoefficientList[Series[1/((1-x^2)(1-x^5)(1-x^6)(1-x^10)), {x, 0, 80}], x] (* or *) LinearRecurrence[ {0, 1, 0, 0, 1, 1, -1, -1, 0, 1, -1, -1, 1, 0, -1, -1, 1, 1, 0, 0, 1, 0, -1}, {1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 2, 5, 2, 5, 4, 7, 5, 8, 5, 11, 7, 13}, 80] (* Harvey P. Dale, Jan 25 2013 *)
CROSSREFS
Sequence in context: A161270 A160974 A187718 * A051493 A338201 A029173
KEYWORD
nonn
AUTHOR
STATUS
approved