login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029197
Expansion of 1/((1-x^2)(1-x^5)(1-x^6)(1-x^11)).
1
1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 3, 3, 4, 3, 4, 4, 6, 6, 7, 6, 8, 8, 11, 10, 12, 11, 14, 14, 17, 16, 19, 18, 22, 22, 25, 25, 28, 28, 32, 32, 36, 36, 40, 40, 45, 45, 50, 50, 55, 55, 61, 61, 67, 67, 73, 74, 80, 81, 87, 88, 95, 96
OFFSET
0,7
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 0, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 0, 0, 1, 0, -1).
FORMULA
a(0)=1, a(1)=0, a(2)=1, a(3)=0, a(4)=1, a(5)=1, a(6)=2, a(7)=1, a(8)=2, a(9)=1, a(10)=3, a(11)=3, a(12)=4, a(13)=3, a(14)=4, a(15)=4, a(16)=6, a(17)=6, a(18)=7, a(19)=6, a(20)=8, a(21)=8, a(22)=11, a(23)=10, a(n)=a(n-2)+a(n-5)+a(n-6)-a(n-7)-a(n-8)-a(n-16)-a(n-17)+ a(n-18)+ a(n-19)+ a(n-22)-a(n-24). - Harvey P. Dale, Apr 16 2015
MATHEMATICA
CoefficientList[Series[1/((1 - x^2) (1 - x^5) (1 - x^6) (1 -x^11)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 02 2014 *)
LinearRecurrence[{0, 1, 0, 0, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 0, 0, 1, 0, -1}, {1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 3, 3, 4, 3, 4, 4, 6, 6, 7, 6, 8, 8, 11, 10}, 70] (* Harvey P. Dale, Apr 16 2015 *)
CROSSREFS
Sequence in context: A286478 A340756 A030273 * A029174 A058753 A282249
KEYWORD
nonn
AUTHOR
STATUS
approved