login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029197 Expansion of 1/((1-x^2)(1-x^5)(1-x^6)(1-x^11)). 1
1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 3, 3, 4, 3, 4, 4, 6, 6, 7, 6, 8, 8, 11, 10, 12, 11, 14, 14, 17, 16, 19, 18, 22, 22, 25, 25, 28, 28, 32, 32, 36, 36, 40, 40, 45, 45, 50, 50, 55, 55, 61, 61, 67, 67, 73, 74, 80, 81, 87, 88, 95, 96 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 0, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 0, 0, 1, 0, -1).

FORMULA

a(0)=1, a(1)=0, a(2)=1, a(3)=0, a(4)=1, a(5)=1, a(6)=2, a(7)=1, a(8)=2, a(9)=1, a(10)=3, a(11)=3, a(12)=4, a(13)=3, a(14)=4, a(15)=4, a(16)=6, a(17)=6, a(18)=7, a(19)=6, a(20)=8, a(21)=8, a(22)=11, a(23)=10, a(n)=a(n-2)+a(n-5)+a(n-6)-a(n-7)-a(n-8)-a(n-16)-a(n-17)+ a(n-18)+ a(n-19)+ a(n-22)-a(n-24). - Harvey P. Dale, Apr 16 2015

MATHEMATICA

CoefficientList[Series[1/((1 - x^2) (1 - x^5) (1 - x^6) (1 -x^11)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 02 2014 *)

LinearRecurrence[{0, 1, 0, 0, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 0, 0, 1, 0, -1}, {1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 3, 3, 4, 3, 4, 4, 6, 6, 7, 6, 8, 8, 11, 10}, 70] (* Harvey P. Dale, Apr 16 2015 *)

CROSSREFS

Sequence in context: A275078 A286478 A030273 * A029174 A058753 A282249

Adjacent sequences:  A029194 A029195 A029196 * A029198 A029199 A029200

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 9 07:30 EDT 2020. Contains 333344 sequences. (Running on oeis4.)