login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058753
McKay-Thompson series of class 76a for Monster.
1
1, 0, 1, 1, 2, 1, 2, 1, 3, 3, 4, 3, 6, 4, 7, 6, 10, 8, 12, 11, 16, 14, 20, 18, 26, 23, 31, 30, 40, 37, 49, 46, 60, 58, 73, 71, 90, 87, 109, 107, 133, 130, 160, 157, 192, 190, 229, 229, 275, 274, 326, 328, 388, 390, 459, 463, 542, 550, 638, 649, 752, 764, 880, 899, 1031, 1054, 1204
OFFSET
-1,5
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of sqrt(T38A), where T38A = A058657, in powers of q. - G. C. Greubel, Jun 24 2018
a(n) ~ exp(2*Pi*sqrt(n/19)) / (2 * 19^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 27 2018
EXAMPLE
T76a = 1/q + q^3 + q^5 + 2*q^7 + q^9 + 2*q^11 + q^13 + 3*q^15 + 3*q^17 + ...
MATHEMATICA
nmax = 100; QP := QPochhammer; G[q_] := 1/(QP[q, q^5]*QP[q^4, q^5]); H[q_] := 1/(QP[q^2, q^5]*QP[q^3, q^5]); T19A := -3 + (G[q]*G[q^19] + q^4*H[q]*H[q^19])^3/q; T38A := -1/2 + (17/4 + T19A + (T19A /. {q -> q^2}) + O[q]^nmax)^(1/2); a:= CoefficientList[Series[(q*T38A + O[q]^nmax)^(1/2), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 24 2018 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
Terms a(12) onward added by G. C. Greubel, Jun 24 2018
STATUS
approved