login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160975
Number of partitions of n where every part appears at least 5 times.
3
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 3, 3, 5, 4, 7, 7, 7, 8, 11, 12, 12, 14, 15, 16, 23, 20, 24, 26, 29, 36, 40, 40, 46, 50, 63, 63, 76, 76, 87, 103, 108, 117, 135, 140, 167, 173, 191, 205, 235, 257, 278, 300, 327, 354, 413, 424, 469, 511, 555, 616, 673, 711, 783, 849, 947
OFFSET
0,11
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..5000 (terms 1..1000 from R. H. Hardin)
FORMULA
G.f.: Product_{j>=1} (1+x^(5*j)/(1-x^j)). - Emeric Deutsch, Jun 28 2009
a(n) ~ sqrt(Pi^2 + 6*c) * exp(sqrt((2*Pi^2/3 + 4*c)*n)) / (4*sqrt(3)*Pi*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-5*x)) dx = -0.990807844177842472956484606320623872921836802804155824925... . - Vaclav Kotesovec, Jan 05 2016
EXAMPLE
a(15) = 3 because we have 33333, 2222211111, and 1^(15). - Emeric Deutsch, Jun 28 2009
MAPLE
g := product(1+x^(5*j)/(1-x^j), j = 1..20): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 0..75); # Emeric Deutsch, Jun 28 2009
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-i*j, i-1), j=5..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..70); # Alois P. Heinz, Feb 06 2024
MATHEMATICA
nmax = 100; Rest[CoefficientList[Series[Product[1 + x^(5*k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 28 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 01 2009
EXTENSIONS
Initial terms changed to match b-file. - N. J. A. Sloane, Aug 31 2009
Maple program fixed by Vaclav Kotesovec, Nov 28 2015
a(0)=1 prepended by Seiichi Manyama, Feb 06 2024
STATUS
approved