OFFSET
0,11
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..5000 (terms 1..1000 from R. H. Hardin)
FORMULA
G.f.: Product_{j>=1} (1+x^(5*j)/(1-x^j)). - Emeric Deutsch, Jun 28 2009
a(n) ~ sqrt(Pi^2 + 6*c) * exp(sqrt((2*Pi^2/3 + 4*c)*n)) / (4*sqrt(3)*Pi*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-5*x)) dx = -0.990807844177842472956484606320623872921836802804155824925... . - Vaclav Kotesovec, Jan 05 2016
EXAMPLE
a(15) = 3 because we have 33333, 2222211111, and 1^(15). - Emeric Deutsch, Jun 28 2009
MAPLE
g := product(1+x^(5*j)/(1-x^j), j = 1..20): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 0..75); # Emeric Deutsch, Jun 28 2009
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-i*j, i-1), j=5..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..70); # Alois P. Heinz, Feb 06 2024
MATHEMATICA
nmax = 100; Rest[CoefficientList[Series[Product[1 + x^(5*k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 28 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 01 2009
EXTENSIONS
Initial terms changed to match b-file. - N. J. A. Sloane, Aug 31 2009
Maple program fixed by Vaclav Kotesovec, Nov 28 2015
a(0)=1 prepended by Seiichi Manyama, Feb 06 2024
STATUS
approved