login
A305300
Ordinal transform of A305430, the smallest k > n whose binary expansion encodes an irreducible (0,1)-polynomial over Q.
3
1, 1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 1, 2, 3
OFFSET
1,4
LINKS
FORMULA
a(1) = 1; for n > 1, if A257000(n) = 1 [when n is in A206074], a(n) = 1, otherwise a(n) = 1 + n - A305429(n).
MATHEMATICA
binPol[n_, x_] := With[{bb = IntegerDigits[n, 2]}, bb.x^Range[Length[bb]-1, 0, -1]];
ip[n_] := If[IrreduciblePolynomialQ[binPol[n, x]], 1, 0];
A305430[n_] := Module[{k = n + 1}, While[ip[k] == 0, k++]; k];
b[_] = 0;
a[n_] := a[n] = With[{t = A305430[n]}, b[t] = b[t]+1];
Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
PROG
(PARI)
A257000(n) = polisirreducible(Pol(binary(n)));
A305429(n) = if(n<3, 1, my(k=n-1); while(k>1 && !A257000(k), k--); (k));
A305300(n) = if((1==n)||(1==A257000(n)), 1, 1+(n-A305429(n)));
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
A305430(n) = { my(k=1+n); while(!A257000(k), k++); (k); };
v305300 = ordinal_transform(vector(up_to, n, A305430(n)));
A305300(n) = v305300[n];
CROSSREFS
Cf. A206074 (gives the positions of other 1's after the initial one).
Cf. also A175851.
Sequence in context: A161296 A161271 A160975 * A330241 A175851 A049711
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 09 2018
STATUS
approved