login
A137200
Number of ways to tile an n X 1 strip with 1 X 1 squares and 2 X 1 dominoes with the restriction that no three consecutive tiles are of the same type.
6
1, 1, 2, 2, 4, 5, 7, 9, 13, 18, 25, 34, 47, 65, 90, 124, 171, 236, 326, 450, 621, 857, 1183, 1633, 2254, 3111, 4294, 5927, 8181, 11292, 15586, 21513, 29694, 40986, 56572, 78085, 107779, 148765, 205337, 283422, 391201, 539966, 745303, 1028725, 1419926, 1959892
OFFSET
0,3
COMMENTS
Without the restriction one gets the Fibonacci numbers, A000045.
Might be called the no-tri-bonacci numbers.
FORMULA
a(n) = a(n-1) + a(n-4) for n>4; g.f.: (1+x^2+x^4)/(1-x-x^4). Also a(n) = a(n-2) + a(n-4) + a(n-5).
EXAMPLE
For example (using 1's to denote squares and 2's to denote dominoes), a(6)=7 because you have the tilings 11211, 1122, 1212, 1221, 2112, 2121 and 2211 and no others.
MATHEMATICA
Join[{1}, LinearRecurrence[{1, 0, 0, 1}, {1, 2, 2, 4}, 50]] (* Harvey P. Dale, Jul 26 2011 *)
CROSSREFS
Cf. A000045.
Sequence in context: A240508 A174068 A135833 * A026930 A211862 A286948
KEYWORD
nonn
AUTHOR
Barry Cipra, Mar 03 2008
STATUS
approved