login
A135833
Number of Section I primes between 2^n and 2^(n+1). See A135832.
2
1, 2, 2, 4, 5, 7, 9, 13, 18, 21, 28, 43, 56, 62, 72, 94, 133, 142, 187, 241, 313, 376, 436, 517, 709, 858, 982, 1271, 1561, 1814, 2192, 2658, 3184, 3853, 4601, 5648, 6881, 8009, 9535, 11651, 13712, 16325, 19381, 23323, 27097, 31782, 37924, 44673, 52695, 62147
OFFSET
1,2
COMMENTS
Comparing these numbers with A036378, the number of primes between 2^n and 2^(n+1), leads one to conjecture that the density of Section I primes is 0.
EXAMPLE
3; 5, 7; 11, 13; 17, 23, 29, 31; 41, 47, 53, 59, 61; 83,...
MATHEMATICA
class[ n_ ] := Length[ NestWhileList[ EulerPhi, n, #>2& ] ]-1; k=2; Table[ cnt=0; While[ p=Prime[ k ]; p<2^(n+1), If[ class[ p ]==n, cnt++ ]; k++ ]; cnt, {n, 20} ] (* T. D. Noe, Aug 04 2008 *)
CROSSREFS
Cf. A092878 (number of odd numbers in Section I).
Sequence in context: A206557 A240508 A174068 * A137200 A026930 A211862
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 30 2007
EXTENSIONS
More terms from T. D. Noe, Aug 04 2008
Extension. T. D. Noe, Nov 18 2008
STATUS
approved