login
A329738
Number of compositions of n whose run-lengths are all equal.
50
1, 1, 2, 4, 6, 8, 19, 24, 45, 75, 133, 215, 401, 662, 1177, 2035, 3587, 6190, 10933, 18979, 33339, 58157, 101958, 178046, 312088, 545478, 955321, 1670994, 2925717, 5118560, 8960946, 15680074, 27447350, 48033502, 84076143, 147142496, 257546243, 450748484, 788937192
OFFSET
0,3
COMMENTS
A composition of n is a finite sequence of positive integers with sum n.
LINKS
FORMULA
a(n) = Sum_{d|n} A003242(d).
a(n) = A329745(n) + A000005(n).
EXAMPLE
The a(1) = 1 through a(6) = 19 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(121) (41) (42)
(1111) (131) (51)
(212) (123)
(11111) (132)
(141)
(213)
(222)
(231)
(312)
(321)
(1122)
(1212)
(2121)
(2211)
(111111)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], SameQ@@Length/@Split[#]&]], {n, 0, 10}]
PROG
(PARI) seq(n)={my(b=Vec(1/(1 - sum(k=1, n, x^k/(1+x^k) + O(x*x^n)))-1)); concat([1], vector(n, k, sumdiv(k, d, b[d])))} \\ Andrew Howroyd, Dec 30 2020
CROSSREFS
Compositions with relatively prime run-lengths are A000740.
Compositions with equal multiplicities are A098504.
Compositions with equal differences are A175342.
Compositions with distinct run-lengths are A329739.
Sequence in context: A048784 A152491 A355557 * A133296 A323333 A076402
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 20 2019
STATUS
approved