login
A048784
a(n) = tau(binomial(2*n,n)), where tau = number of divisors (A000005).
5
1, 2, 4, 6, 8, 18, 24, 32, 48, 48, 48, 128, 96, 192, 384, 480, 384, 768, 1152, 1536, 2304, 2048, 2048, 3840, 3456, 4608, 6144, 3840, 8192, 20480, 10240, 12288, 18432, 36864, 36864, 49152, 24576, 32768, 98304, 92160, 73728, 245760, 262144
OFFSET
0,2
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
G. V. Fedorov, Number of divisors of the central binomial coefficient, Moscow Univ. Math. Bull., Vol. 68 (2013), pp. 194-197.
FORMULA
a(n) = A000005(A000984(n)). - Michel Marcus, Aug 21 2013
log(a(n)) = log(2) * (pi(2*n)-pi(n)) + log(2) * (n/log(n)) * Sum_{k=0..T} c_k/log(n)^k + O(n/log(n)^(T+2)) for any T >= 0, where c_k = Sum_{m>=1} Integral_{m+1/2..m+1} log(t)^m/t^2 dt. In particular for T = 0, log(a(n)) = 2 * log(2)^2 * (n/log(n)) + O(n/log(n)^2) (Fedorov, 2013). - Amiram Eldar, Dec 10 2024
MAPLE
A048784 := proc(n)
numtheory[tau](binomial(2*n, n)) ;
end proc:
seq(A048784(n), n=0..30) ; # R. J. Mathar, Jul 12 2024
MATHEMATICA
f[n_] := DivisorSigma[0, Binomial[2 n, n]]; Table[f@n, {n, 0, 42}] (* Robert G. Wilson v, Apr 08 2009 *)
PROG
(PARI) fv(n, p)=my(s); while(n\=p, s+=n); s
a(n)=my(s=1); forprime(p=2, 2*n, s*=fv(2*n, p)-2*fv(n, p)+1); s \\ Charles R Greathouse IV, Aug 21 2013
CROSSREFS
KEYWORD
nonn
STATUS
approved