login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104001
Triangle T(n,k) read by rows: number of permutations in S_n avoiding all k-length patterns starting with fixed m, 2<k<=n, 1<=m<=k.
2
2, 4, 6, 8, 18, 24, 16, 54, 96, 120, 32, 162, 384, 600, 720, 64, 486, 1536, 3000, 4320, 5040, 128, 1458, 6144, 15000, 25920, 35280, 40320, 256, 4374, 24576, 75000, 155520, 246960, 322560, 362880, 512, 13122, 98304, 375000, 933120, 1728720, 2580480, 3265920, 3628800
OFFSET
3,1
FORMULA
T(n, k) = (k-2)! * (k-1)^(n+1-k).
From G. C. Greubel, Nov 29 2022: (Start)
T(n, 3) = A000079(n-2).
T(n, 4) = 6*A000244(n-4).
T(n, 5) = 4!*A000302(n-5).
T(2*n-3, n) = A152684(n-1). (End)
EXAMPLE
Triangle begins as:
2;
4, 6;
8, 18, 24;
16, 54, 96, 120;
32, 162, 384, 600, 720;
64, 486, 1536, 3000, 4320, 5040;
128, 1458, 6144, 15000, 25920, 35280, 40320;
MATHEMATICA
Table[(k-1)!*(k-1)^(n-k), {n, 3, 15}, {k, 3, n}]//Flatten (* G. C. Greubel, Nov 29 2022 *)
PROG
(Magma) [Factorial(k-1)*(k-1)^(n-k): k in [3..n], n in [3..15]]; // G. C. Greubel, Nov 29 2022
(SageMath)
def A104001(n, k): return factorial(k-1)*(k-1)^(n-k)
flatten([[A104001(n, k) for k in range(3, n+1)] for n in range(3, 16)]) # G. C. Greubel, Nov 29 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Feb 26 2005
STATUS
approved