login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) read by rows: number of permutations in S_n avoiding all k-length patterns starting with fixed m, 2<k<=n, 1<=m<=k.
2

%I #7 Nov 29 2022 04:04:28

%S 2,4,6,8,18,24,16,54,96,120,32,162,384,600,720,64,486,1536,3000,4320,

%T 5040,128,1458,6144,15000,25920,35280,40320,256,4374,24576,75000,

%U 155520,246960,322560,362880,512,13122,98304,375000,933120,1728720,2580480,3265920,3628800

%N Triangle T(n,k) read by rows: number of permutations in S_n avoiding all k-length patterns starting with fixed m, 2<k<=n, 1<=m<=k.

%H G. C. Greubel, <a href="/A104001/b104001.txt">Rows n = 3..50 of the triangle, flattened</a>

%H T. Mansour, <a href="http://arXiv.org/abs/math.CO/9911243">Permutations containing and avoiding certain patterns</a>

%F T(n, k) = (k-2)! * (k-1)^(n+1-k).

%F From _G. C. Greubel_, Nov 29 2022: (Start)

%F T(n, 3) = A000079(n-2).

%F T(n, 4) = 6*A000244(n-4).

%F T(n, 5) = 4!*A000302(n-5).

%F T(2*n-3, n) = A152684(n-1). (End)

%e Triangle begins as:

%e 2;

%e 4, 6;

%e 8, 18, 24;

%e 16, 54, 96, 120;

%e 32, 162, 384, 600, 720;

%e 64, 486, 1536, 3000, 4320, 5040;

%e 128, 1458, 6144, 15000, 25920, 35280, 40320;

%t Table[(k-1)!*(k-1)^(n-k), {n,3,15}, {k,3,n}]//Flatten (* _G. C. Greubel_, Nov 29 2022 *)

%o (Magma) [Factorial(k-1)*(k-1)^(n-k): k in [3..n], n in [3..15]]; // _G. C. Greubel_, Nov 29 2022

%o (SageMath)

%o def A104001(n,k): return factorial(k-1)*(k-1)^(n-k)

%o flatten([[A104001(n,k) for k in range(3,n+1)] for n in range(3,16)]) # _G. C. Greubel_, Nov 29 2022

%Y Cf. A000079, A000244, A000302, A137268,

%K nonn,tabl

%O 3,1

%A _Ralf Stephan_, Feb 26 2005