login
A137268
Triangle T(n, k) = k! * (k+1)^(n-k), read by rows.
3
1, 2, 2, 4, 6, 6, 8, 18, 24, 24, 16, 54, 96, 120, 120, 32, 162, 384, 600, 720, 720, 64, 486, 1536, 3000, 4320, 5040, 5040, 128, 1458, 6144, 15000, 25920, 35280, 40320, 40320, 256, 4374, 24576, 75000, 155520, 246960, 322560, 362880, 362880
OFFSET
1,2
COMMENTS
Essentially the same as A104001.
LINKS
Fan Chung and R. L. Graham, Primitive juggling sequences, Am. Math. Monthly 115 (3) (2008) 185-194.
FORMULA
J(b, n) = (b+1)^(n-b)*b! if n > b, otherwise n! (notation of Chung and Graham).
From G. C. Greubel, Nov 28 2022: (Start)
T(n, k) = k! * (k+1)^(n-k).
T(n, n-2) = 2*A074143(n), n > 1.
T(2*n, n) = A152684(n).
T(2*n, n-1) = A061711(n).
T(2*n+1, n+1) = A066319(n). (End)
EXAMPLE
Triangle begins as:
1;
2, 2;
4, 6, 6;
8, 18, 24, 24;
16, 54, 96, 120, 120;
32, 162, 384, 600, 720, 720;
64, 486, 1536, 3000, 4320, 5040, 5040;
128, 1458, 6144, 15000, 25920, 35280, 40320, 40320;
256, 4374, 24576, 75000, 155520, 246960, 322560, 362880, 362880;
512, 13122, 98304, 375000, 933120, 1728720, 2580480, 3265920, 3628800, 3628800;
MATHEMATICA
T[n_, k_]:= k!*(k+1)^(n-k);
Table[T[n, k], {n, 12}, {k, n}]//Flatten
PROG
(Magma) [Factorial(k)*(k+1)^(n-k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 28 2022
(SageMath)
def A137268(n, k): return factorial(k)*(k+1)^(n-k)
flatten([[A137268(n, k) for k in range(1, n+1)] for n in range(14)]) # G. C. Greubel, Nov 28 2022
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Mar 12 2008
EXTENSIONS
Edited by G. C. Greubel, Nov 28 2022
STATUS
approved