login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137265
G.f. y(x) is solution of x y^3 - (1 + x^2) y + 1 = 0 with y(0) = 1.
3
1, 1, 2, 8, 35, 163, 796, 4024, 20885, 110654, 596064, 3254752, 17974893, 100227022, 563482140, 3190633232, 18179765509, 104158703503, 599698459613, 3467978715612, 20134256546896, 117313279477959, 685756774642494, 4020515276730588, 23636036336651811
OFFSET
0,3
LINKS
FORMULA
a(0) = 1, a(1) = 1, a(n) = -a(n-2) + sum_{i=0}^{n-1} sum_{j=0}^{n-1-i} a(i) a(j) a(n-1-i-j).
a(n) ~ sqrt(1 - (2*r)^(5/3)) / (2^(4/3) * sqrt(3*Pi) * n^(3/2) * r^(n + 1/3)), where r = 0.15978798947663136723274504893788499231133813071845... is the real root of the equation (1+r^2)^3 = 27*r/4. - Vaclav Kotesovec, May 03 2016
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(3*n-5*k,k) * binomial(3*n-6*k,n-2*k) / (2*n-4*k+1). - Seiichi Manyama, Nov 02 2023
EXAMPLE
a(3) = 8 because g(x) = 1 + x + 2 x^2 + 8 x^3 + O(x^4) satisfies x*g(x)^3 - (1 + x^2)*g(x) + 1 = O(x^4).
MAPLE
f:= (x, y) -> x*y^3 - (1 + x^2)*y + 1; N:= (y, n) -> convert(normal(taylor(y-f(x, y)/D[2](f)(x, y), x=0, n)), polynom); Y:= 1; for j from 1 to 6 do Y:= N(Y, 2^j) end do; seq(coeftayl(Y, x=0, j), j=0..2^6-1);
MATHEMATICA
max = 22; g[x_] := Sum[a[k]*x^k, {k, 0, max}]; coes = CoefficientList[ Series[ x*g[x]^3 - (1+x^2)*g[x] + 1, {x, 0, max}], x]; sol = First[ Solve[ Thread[ coes == 0 ] ] ]; Table[a[n] /. sol, {n, 0, max}](* Jean-François Alcover, Nov 28 2011 *)
terms = 25; y[_] = 1; Do[y[x_] = (1 + x*y[x]^3)/(1 + x^2) + O[x]^terms, terms]; CoefficientList[y[x], x] (* Jean-François Alcover, Jan 11 2018 *)
PROG
(PARI) a(n) = sum(k=0, n\2, (-1)^k*binomial(3*n-5*k, k)*binomial(3*n-6*k, n-2*k)/(2*n-4*k+1)); \\ Seiichi Manyama, Nov 02 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Israel, Mar 12 2008
STATUS
approved