login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. y(x) is solution of x y^3 - (1 + x^2) y + 1 = 0 with y(0) = 1.
3

%I #24 Nov 02 2023 10:39:46

%S 1,1,2,8,35,163,796,4024,20885,110654,596064,3254752,17974893,

%T 100227022,563482140,3190633232,18179765509,104158703503,599698459613,

%U 3467978715612,20134256546896,117313279477959,685756774642494,4020515276730588,23636036336651811

%N G.f. y(x) is solution of x y^3 - (1 + x^2) y + 1 = 0 with y(0) = 1.

%H Vincenzo Librandi, <a href="/A137265/b137265.txt">Table of n, a(n) for n = 0..100</a>

%F a(0) = 1, a(1) = 1, a(n) = -a(n-2) + sum_{i=0}^{n-1} sum_{j=0}^{n-1-i} a(i) a(j) a(n-1-i-j).

%F a(n) ~ sqrt(1 - (2*r)^(5/3)) / (2^(4/3) * sqrt(3*Pi) * n^(3/2) * r^(n + 1/3)), where r = 0.15978798947663136723274504893788499231133813071845... is the real root of the equation (1+r^2)^3 = 27*r/4. - _Vaclav Kotesovec_, May 03 2016

%F a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(3*n-5*k,k) * binomial(3*n-6*k,n-2*k) / (2*n-4*k+1). - _Seiichi Manyama_, Nov 02 2023

%e a(3) = 8 because g(x) = 1 + x + 2 x^2 + 8 x^3 + O(x^4) satisfies x*g(x)^3 - (1 + x^2)*g(x) + 1 = O(x^4).

%p f:= (x,y) -> x*y^3 - (1 + x^2)*y + 1; N:= (y,n) -> convert(normal(taylor(y-f(x,y)/D[2](f)(x,y),x=0,n)),polynom); Y:= 1; for j from 1 to 6 do Y:= N(Y,2^j) end do; seq(coeftayl(Y,x=0,j),j=0..2^6-1);

%t max = 22; g[x_] := Sum[a[k]*x^k, {k, 0, max}]; coes = CoefficientList[ Series[ x*g[x]^3 - (1+x^2)*g[x] + 1, {x, 0, max}], x]; sol = First[ Solve[ Thread[ coes == 0 ] ] ]; Table[a[n] /. sol, {n, 0, max}](* _Jean-François Alcover_, Nov 28 2011 *)

%t terms = 25; y[_] = 1; Do[y[x_] = (1 + x*y[x]^3)/(1 + x^2) + O[x]^terms, terms]; CoefficientList[y[x], x] (* _Jean-François Alcover_, Jan 11 2018 *)

%o (PARI) a(n) = sum(k=0, n\2, (-1)^k*binomial(3*n-5*k, k)*binomial(3*n-6*k, n-2*k)/(2*n-4*k+1)); \\ _Seiichi Manyama_, Nov 02 2023

%Y Cf. A000108, A200753, A200755.

%Y Cf. A364474.

%K nonn,easy

%O 0,3

%A _Robert Israel_, Mar 12 2008