login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions of n whose run-lengths are all equal.
50

%I #9 Dec 30 2020 19:44:22

%S 1,1,2,4,6,8,19,24,45,75,133,215,401,662,1177,2035,3587,6190,10933,

%T 18979,33339,58157,101958,178046,312088,545478,955321,1670994,2925717,

%U 5118560,8960946,15680074,27447350,48033502,84076143,147142496,257546243,450748484,788937192

%N Number of compositions of n whose run-lengths are all equal.

%C A composition of n is a finite sequence of positive integers with sum n.

%H Andrew Howroyd, <a href="/A329738/b329738.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = Sum_{d|n} A003242(d).

%F a(n) = A329745(n) + A000005(n).

%e The a(1) = 1 through a(6) = 19 compositions:

%e (1) (2) (3) (4) (5) (6)

%e (11) (12) (13) (14) (15)

%e (21) (22) (23) (24)

%e (111) (31) (32) (33)

%e (121) (41) (42)

%e (1111) (131) (51)

%e (212) (123)

%e (11111) (132)

%e (141)

%e (213)

%e (222)

%e (231)

%e (312)

%e (321)

%e (1122)

%e (1212)

%e (2121)

%e (2211)

%e (111111)

%t Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Length/@Split[#]&]],{n,0,10}]

%o (PARI) seq(n)={my(b=Vec(1/(1 - sum(k=1, n, x^k/(1+x^k) + O(x*x^n)))-1)); concat([1], vector(n, k, sumdiv(k, d, b[d])))} \\ _Andrew Howroyd_, Dec 30 2020

%Y Compositions with relatively prime run-lengths are A000740.

%Y Compositions with equal multiplicities are A098504.

%Y Compositions with equal differences are A175342.

%Y Compositions with distinct run-lengths are A329739.

%Y Cf. A003242, A008965, A107429, A164707, A238130, A242882, A274174, A329745, A329766.

%K nonn

%O 0,3

%A _Gus Wiseman_, Nov 20 2019