OFFSET
1,4
COMMENTS
Least k whose value is n: 1, 4, 35, 536, 16775, 1060976, ..., = A165933. - Robert G. Wilson v, Sep 30 2009
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = 1 for n in A140690. - Robert G. Wilson v, Sep 30 2009
EXAMPLE
92 in binary is 1011100. There is a run of one 1, followed by a run of one 0, then a run of three 1's, then finally a run of two 0's. The run lengths are therefore (1,1,3,2). The distinct values of these run lengths are (1,3,2). Since there are 3 distinct values, then a(92) = 3.
MATHEMATICA
f[n_] := Length@ Union@ Map[ Length, Split@ IntegerDigits[n, 2]]; Array[f, 105] (* Robert G. Wilson v, Sep 30 2009 *)
PROG
(Haskell)
import Data.List (group, nub)
a165413 = length . nub . map length . group . a030308_row
-- Reinhard Zumkeller, Mar 02 2013
(PARI)
binruns(n) = {
if (n == 0, return([1, 0]));
my(bag = List(), v=0);
while(n != 0,
v = valuation(n, 2); listput(bag, v); n >>= v; n++;
v = valuation(n, 2); listput(bag, v); n >>= v; n--);
return(Vec(bag));
};
a(n) = #Set(select(k->k, binruns(n)));
vector(105, i, a(i)) \\ Gheorghe Coserea, Sep 17 2015
(Python)
from itertools import groupby
def a(n): return len(set([len(list(g)) for k, g in groupby(bin(n)[2:])]))
print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Jan 04 2021
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Leroy Quet, Sep 17 2009
EXTENSIONS
More terms from Robert G. Wilson v, Sep 30 2009
STATUS
approved