login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349441
Dirichlet convolution of A057521 (powerful part of n) with A055615 (Dirichlet inverse of n).
4
1, -1, -2, 2, -4, 2, -6, 0, 6, 4, -10, -4, -12, 6, 8, 0, -16, -6, -18, -8, 12, 10, -22, 0, 20, 12, 0, -12, -28, -8, -30, 0, 20, 16, 24, 12, -36, 18, 24, 0, -40, -12, -42, -20, -24, 22, -46, 0, 42, -20, 32, -24, -52, 0, 40, 0, 36, 28, -58, 16, -60, 30, -36, 0, 48, -20, -66, -32, 44, -24, -70, 0, -72, 36, -40, -36
OFFSET
1,3
COMMENTS
Multiplicative because A055615 and A057521 are.
Convolving this with Euler phi (A000010) produces A349379.
LINKS
FORMULA
a(n) = Sum_{d|n} A057521(n/d) * A055615(d).
Multiplicative with a(p^e) = 1 - p is e = 1, p^2 - p if e = 2, and 0 otherwise. - Amiram Eldar, Nov 19 2021
MATHEMATICA
f[p_, e_] := Which[e > 2, 0, e == 2, p^2 - p, e == 1, 1 - p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 19 2021 *)
PROG
(PARI)
A055615(n) = (n*moebius(n));
A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
A349441(n) = sumdiv(n, d, A057521(n/d)*A055615(d));
CROSSREFS
Cf. A055615, A057521, A349442 (Dirichlet inverse), A349443 (sum with it).
Cf. also A097945, A349379.
Sequence in context: A090397 A339176 A328729 * A329733 A289624 A258446
KEYWORD
sign,mult,look
AUTHOR
Antti Karttunen, Nov 18 2021
STATUS
approved