login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328729
Dirichlet g.f.: zeta(s) / (zeta(s-1) * zeta(2*s)).
1
1, -1, -2, -2, -4, 2, -6, 0, -3, 4, -10, 4, -12, 6, 8, 0, -16, 3, -18, 8, 12, 10, -22, 0, -5, 12, 0, 12, -28, -8, -30, 0, 20, 16, 24, 6, -36, 18, 24, 0, -40, -12, -42, 20, 12, 22, -46, 0, -7, 5, 32, 24, -52, 0, 40, 0, 36, 28, -58, -16, -60, 30, 18, 0, 48, -20, -66, 32, 44, -24
OFFSET
1,3
COMMENTS
Dirichlet inverse of A206369.
LINKS
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d<n} A206369(n/d) * a(d).
a(n) = Sum_{d|n} mu(n/d)^2 * mu(d) * d.
a(n) = Sum_{d|n} A008966(n/d) * A055615(d).
a(n) = Sum_{d|n} A271102(n/d) * A023900(d).
Multiplicative with a(p^e) = 2 - p - e if e < 3, and 0 otherwise. - Amiram Eldar, Dec 02 2020
MATHEMATICA
a[1] = 1; a[n_] := -Sum[(n/d) DivisorSum[n/d, LiouvilleLambda[#]/# &] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 70}]
Table[DivisorSum[n, MoebiusMu[n/#]^2 MoebiusMu[#] # &], {n, 1, 70}]
f[p_, e_] := If[e < 3, -p - e + 2, 0]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)^2*moebius(d)*d); \\ Michel Marcus, Dec 02 2020
CROSSREFS
Cf. A008683, A008966, A023900, A046099 (positions of 0's), A046692, A055615, A206369, A271102.
Sequence in context: A179013 A090397 A339176 * A349441 A329733 A289624
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Oct 26 2019
STATUS
approved