login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet g.f.: zeta(s) / (zeta(s-1) * zeta(2*s)).
1

%I #10 Dec 02 2020 03:16:27

%S 1,-1,-2,-2,-4,2,-6,0,-3,4,-10,4,-12,6,8,0,-16,3,-18,8,12,10,-22,0,-5,

%T 12,0,12,-28,-8,-30,0,20,16,24,6,-36,18,24,0,-40,-12,-42,20,12,22,-46,

%U 0,-7,5,32,24,-52,0,40,0,36,28,-58,-16,-60,30,18,0,48,-20,-66,32,44,-24

%N Dirichlet g.f.: zeta(s) / (zeta(s-1) * zeta(2*s)).

%C Dirichlet inverse of A206369.

%H Amiram Eldar, <a href="/A328729/b328729.txt">Table of n, a(n) for n = 1..10000</a>

%F a(1) = 1; a(n) = -Sum_{d|n, d<n} A206369(n/d) * a(d).

%F a(n) = Sum_{d|n} mu(n/d)^2 * mu(d) * d.

%F a(n) = Sum_{d|n} A008966(n/d) * A055615(d).

%F a(n) = Sum_{d|n} A271102(n/d) * A023900(d).

%F Multiplicative with a(p^e) = 2 - p - e if e < 3, and 0 otherwise. - _Amiram Eldar_, Dec 02 2020

%t a[1] = 1; a[n_] := -Sum[(n/d) DivisorSum[n/d, LiouvilleLambda[#]/# &] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 70}]

%t Table[DivisorSum[n, MoebiusMu[n/#]^2 MoebiusMu[#] # &], {n, 1, 70}]

%t f[p_, e_] := If[e < 3, -p - e + 2, 0]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Dec 02 2020 *)

%o (PARI) a(n) = sumdiv(n, d, moebius(n/d)^2*moebius(d)*d); \\ _Michel Marcus_, Dec 02 2020

%Y Cf. A008683, A008966, A023900, A046099 (positions of 0's), A046692, A055615, A206369, A271102.

%K sign,mult

%O 1,3

%A _Ilya Gutkovskiy_, Oct 26 2019