OFFSET
2,2
COMMENTS
Row lengths are A046072.
The products of the terms in each row are A000010.
First column is A002322.
Row 2^k is [2, 2^(k-2)] for k > 2. - Tom Edgar, May 31 2015
Row p^k (and row 2*p^k) is [(p-1)*p^(k-1)] for odd prime p. - Tom Edgar, May 31 2015
The number of distinct groups over numbers less than or equal to 10^k for k=1,2,3,4,5,6 is 5, 50, 447, 4060, 36655, 335714.
REFERENCES
Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 92-93, 1993.
LINKS
Eric Weisstein's World of Mathematics, Modulo Multiplication Group
Wikipedia, Multiplicative Group of Integers Modulo n.
EXAMPLE
1;
2;
2;
4;
2;
6;
2, 2;
6;
4;
10;
2, 2;
12;
6;
4, 2;
4, 2;
16;
6;
18;
4, 2;
6, 2;
10;
22;
2, 2, 2;
The row for n=8 reads: 2,2 because the multiplicative group mod 8 is isomorphic to C_2 X C_2.
MATHEMATICA
f[{p_, e_}] := {FactorInteger[p - 1][[All, 1]]^
FactorInteger[p - 1][[All, 2]],
FactorInteger[p^(e - 1)][[All, 1]]^
FactorInteger[p^(e - 1)][[All, 2]]};
fun[lst_] :=
Module[{int, num, res},
int = Sort /@ GatherBy[Join @@ (FactorInteger /@ lst), First];
num = Times @@ Power @@@ (Last@# & /@ int);
res = Flatten[Map[Power @@ # &, Most /@ int, {2}]];
{num, res}]
rec[lt_] :=
First@NestWhile[{Append[#[[1]], fun[#[[2]]][[1]]],
fun[#[[2]]][[2]]} &, {{}, lt}, Length[#[[2]]] > 0 &];
Table[If[! IntegerQ[n/8],
DeleteCases[rec[Flatten[Map[f, FactorInteger[n]]]], 1],
DeleteCases[
rec[Join[{2, 2^(FactorInteger[n][[1, 2]] - 2)},
Flatten[Map[f, Drop[FactorInteger[n], 1]]]]], 1]], {n, 2,
50}] /. {} -> {1} // Grid
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer and Mark Dooris, May 30 2015
STATUS
approved