login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349379
Möbius transform of A057521 (powerful part of n).
2
1, 0, 0, 3, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 18, 0, 0, 0, 0, 16, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0
OFFSET
1,4
COMMENTS
Multiplicative with a(p^e) = 0 if e = 1, p^2 - 1 if e = 2 and p^e - p^(e-1) otherwise. - Amiram Eldar, Nov 18 2021
LINKS
FORMULA
a(n) = Sum_{d|n} A008683(n/d) * A057521(d).
a(n) = Sum_{d|n} A000010(n/d) * A349441(d).
MATHEMATICA
f[p_, e_] := Which[e > 2, p^e - p^(e - 1), e == 2, p^2 - 1, e == 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
PROG
(PARI)
A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
A349379(n) = sumdiv(n, d, moebius(n/d)*A057521(d));
(Python)
from math import prod
from sympy import factorint
def A349379(n): return prod(0 if e==1 else p**e - (1 if e==2 else p**(e-1)) for p, e in factorint(n).items()) # Chai Wah Wu, Nov 14 2022
CROSSREFS
Cf. also A300717.
Sequence in context: A122480 A096133 A378036 * A293381 A118112 A245552
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Nov 18 2021
STATUS
approved