login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349376
Dirichlet convolution of A006368 with the Dirichlet inverse of A006369, where A006368 is the "amusical permutation", and A006369 is its inverse permutation.
8
1, 0, 0, 1, -3, 5, -4, -2, 1, 11, -7, -7, -7, 14, 7, 4, -10, 2, -11, -22, 10, 25, -14, 16, 7, 25, 0, -26, -17, -41, -18, -8, 17, 36, 34, 7, -21, 39, 17, 52, -24, -52, -25, -48, 1, 50, -28, -36, 8, -51, 24, -48, -31, 7, 62, 60, 27, 61, -35, 136, -35, 64, 0, 16, 62, -93, -39, -70, 34, -178, -42, -26, -42, 75, -27, -74
OFFSET
1,5
COMMENTS
Obviously, convolving this sequence with A006369 gives its inverse A006368 from n >= 1 onward.
LINKS
FORMULA
a(n) = Sum_{d|n} A006368(d) * A349368(n/d).
PROG
(PARI)
A006368(n) = ((3*n)+(n%2))\(2+((n%2)*2));
A006369(n) = if(!(n%3), (2/3)*n, (1/3)*if(1==(n%3), ((4*n)-1), ((4*n)+1)));
memoA349368 = Map();
A349368(n) = if(1==n, 1, my(v); if(mapisdefined(memoA349368, n, &v), v, v = -sumdiv(n, d, if(d<n, A006369(n/d)*A349368(d), 0)); mapput(memoA349368, n, v); (v)));
A349376(n) = sumdiv(n, d, A006368(d)*A349368(n/d));
CROSSREFS
Cf. A006368, A006369, A349368, A349377 (Dirichlet inverse), A349378 (sum with it).
Cf. also pairs A349613, A349614 and A349397, A349398 for similar constructions.
Sequence in context: A317191 A165109 A349377 * A134892 A253074 A055266
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 17 2021
STATUS
approved