Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Nov 15 2022 02:37:36
%S 1,0,0,3,0,0,0,4,8,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,24,0,18,0,0,0,0,16,0,
%T 0,0,24,0,0,0,0,0,0,0,0,0,0,0,0,48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,
%U 0,0,0,0,0,32,0,0,0,0,0,0,0,0,54,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,72,0,0
%N Möbius transform of A057521 (powerful part of n).
%C Multiplicative with a(p^e) = 0 if e = 1, p^2 - 1 if e = 2 and p^e - p^(e-1) otherwise. - _Amiram Eldar_, Nov 18 2021
%H Antti Karttunen, <a href="/A349379/b349379.txt">Table of n, a(n) for n = 1..20000</a>
%F a(n) = Sum_{d|n} A008683(n/d) * A057521(d).
%F a(n) = Sum_{d|n} A000010(n/d) * A349441(d).
%t f[p_, e_] := Which[e > 2, p^e - p^(e - 1), e == 2, p^2 - 1, e == 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Nov 18 2021 *)
%o (PARI)
%o A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
%o A349379(n) = sumdiv(n,d,moebius(n/d)*A057521(d));
%o (Python)
%o from math import prod
%o from sympy import factorint
%o def A349379(n): return prod(0 if e==1 else p**e - (1 if e==2 else p**(e-1)) for p,e in factorint(n).items()) # _Chai Wah Wu_, Nov 14 2022
%Y Cf. A000010, A008683, A057521, A349441.
%Y Cf. also A300717.
%K nonn,mult
%O 1,4
%A _Antti Karttunen_, Nov 18 2021