OFFSET
1,5
COMMENTS
It might first seem that A000265(a(p^k)) = p^(k-1) for all odd primes and all exponents k >= 1, but this does not hold for prime 37. However, with p=37, identity A065330(A349438(37^k)) = 37^(k-1) seems to hold for all exponents k >= 1. - Antti Karttunen, Nov 20 2021
LINKS
FORMULA
a(n) = Sum_{d|n} d * A349348(n/d).
MATHEMATICA
f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := If[EvenQ[n], n/2, Times @@ f @@@ FactorInteger[n]]; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := DivisorSum[n, # * sinv[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
memoA349348 = Map();
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 18 2021
STATUS
approved