OFFSET
0,3
COMMENTS
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.
EXAMPLE
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (221) (33) (322) (44)
(211) (311) (222) (331) (332)
(1111) (11111) (411) (421) (422)
(2211) (511) (611)
(21111) (22111) (2222)
(111111) (31111) (3311)
(1111111) (22211)
(41111)
(221111)
(2111111)
(11111111)
MATHEMATICA
revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1), {i, Length[q]}];
Table[Length[Select[IntegerPartitions[n], IntegerQ[revaltprod[#]]&]], {n, 0, 30}]
CROSSREFS
Allowing any reverse-alternating product >= 1 gives A344607.
Allowing any reverse-alternating product < 1 gives A344608.
Allowing any reverse-alternating product <= 1 gives A347443.
Allowing any reverse-alternating product > 1 gives A347449.
Ranked by A347454.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A347462 counts possible reverse-alternating products of partitions.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 14 2021
STATUS
approved