login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347446
Number of integer partitions of n with integer alternating product.
28
1, 1, 2, 3, 5, 6, 10, 12, 18, 22, 31, 37, 54, 62, 84, 100, 134, 157, 207, 241, 314, 363, 463, 537, 685, 785, 985, 1138, 1410, 1616, 1996, 2286, 2801, 3201, 3885, 4434, 5363, 6098, 7323, 8329, 9954, 11293, 13430, 15214, 18022, 20383, 24017, 27141, 31893, 35960
OFFSET
0,3
COMMENTS
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
EXAMPLE
The a(1) = 1 through a(7) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (41) (33) (61)
(111) (31) (221) (42) (322)
(211) (311) (51) (331)
(1111) (2111) (222) (421)
(11111) (411) (511)
(2211) (2221)
(3111) (4111)
(21111) (22111)
(111111) (31111)
(211111)
(1111111)
MATHEMATICA
altprod[q_]:=Product[q[[i]]^(-1)^(i-1), {i, Length[q]}];
Table[Length[Select[IntegerPartitions[n], IntegerQ[altprod[#]]&]], {n, 0, 30}]
CROSSREFS
Allowing any reverse-alternating product >= 1 gives A344607.
Allowing any alternating product <= 1 gives A119620, reverse A347443.
Allowing any reverse-alternating product < 1 gives A344608.
The multiplicative version (factorizations) is A347437, reverse A347442.
The odd-length case is A347444, ranked by A347453.
The reverse version is A347445, ranked by A347454.
Allowing any alternating product > 1 gives A347448, reverse A347449.
Ranked by A347457.
The even-length case is A347704.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A347461 counts possible alternating products of partitions.
Sequence in context: A199016 A088314 A304405 * A097071 A105420 A058641
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 15 2021
STATUS
approved