login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A347444
Number of odd-length integer partitions of n with integer alternating product.
13
0, 1, 1, 2, 2, 4, 4, 8, 7, 14, 13, 24, 21, 40, 35, 62, 55, 99, 85, 151, 128, 224, 195, 331, 283, 481, 416, 690, 593, 980, 844, 1379, 1189, 1918, 1665, 2643, 2292, 3630, 3161, 4920, 4299, 6659, 5833, 8931, 7851, 11905, 10526, 15805, 13987, 20872, 18560, 27398
OFFSET
0,4
COMMENTS
We define the alternating product of a sequence (y_1, ... ,y_k) to be the Product_i y_i^((-1)^(i-1)).
The reverse version (integer reverse-alternating product) is the same.
EXAMPLE
The a(1) = 1 through a(9) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(111) (211) (221) (222) (322) (332) (333)
(311) (411) (331) (422) (441)
(11111) (21111) (421) (611) (522)
(511) (22211) (621)
(22111) (41111) (711)
(31111) (2111111) (22221)
(1111111) (32211)
(33111)
(42111)
(51111)
(2211111)
(3111111)
(111111111)
MATHEMATICA
altprod[q_]:=Product[q[[i]]^(-1)^(i-1), {i, Length[q]}];
Table[Length[Select[IntegerPartitions[n], OddQ[Length[#]]&&IntegerQ[altprod[#]]&]], {n, 0, 30}]
CROSSREFS
The reciprocal version is A035363.
Allowing any alternating product gives A027193.
The multiplicative version (factorizations) is A347441.
Allowing any length gives A347446, reverse A347445.
Allowing any length and alternating product > 1 gives A347448.
Allowing any reverse-alternating product > 1 gives A347449.
Ranked by A347453.
The even-length instead of odd-length version is A347704.
A000041 counts partitions.
A000302 counts odd-length compositions, ranked by A053738.
A025047 counts wiggly compositions.
A026424 lists numbers with odd bigomega.
A027187 counts partitions of even length, strict A067661.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1, ranked by A028982.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A339890 counts odd-length factorizations.
A347437 counts factorizations with integer alternating product.
A347461 counts possible alternating products of partitions.
Sequence in context: A138219 A279405 A100835 * A120541 A190172 A339820
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 14 2021
STATUS
approved