Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #9 Sep 27 2021 07:55:16
%S 1,1,2,2,4,4,7,8,12,14,20,24,32,40,50,62,77,99,115,151,170,224,251,
%T 331,360,481,517,690,728,980,1020,1379,1420,1918,1962,2643,2677,3630,
%U 3651,4920,4926,6659,6625,8931,8853,11905,11781,15805,15562,20872,20518
%N Number of integer partitions of n with integer reverse-alternating product.
%C We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.
%e The a(1) = 1 through a(8) = 12 partitions:
%e (1) (2) (3) (4) (5) (6) (7) (8)
%e (11) (111) (22) (221) (33) (322) (44)
%e (211) (311) (222) (331) (332)
%e (1111) (11111) (411) (421) (422)
%e (2211) (511) (611)
%e (21111) (22111) (2222)
%e (111111) (31111) (3311)
%e (1111111) (22211)
%e (41111)
%e (221111)
%e (2111111)
%e (11111111)
%t revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}];
%t Table[Length[Select[IntegerPartitions[n],IntegerQ[revaltprod[#]]&]],{n,0,30}]
%Y Allowing any reverse-alternating product >= 1 gives A344607.
%Y Allowing any reverse-alternating product < 1 gives A344608.
%Y The multiplicative version is A347442, unreversed A347437.
%Y Allowing any reverse-alternating product <= 1 gives A347443.
%Y Restricting to odd length gives A347444, ranked by A347453.
%Y The unreversed version is A347446, ranked by A347457.
%Y Allowing any reverse-alternating product > 1 gives A347449.
%Y Ranked by A347454.
%Y A000041 counts partitions, with multiplicative version A001055.
%Y A027187 counts partitions of even length.
%Y A027193 counts partitions of odd length.
%Y A103919 counts partitions by sum and alternating sum (reverse: A344612).
%Y A325534 counts separable partitions, ranked by A335433.
%Y A325535 counts inseparable partitions, ranked by A335448.
%Y A339890 counts factorizations with alternating product > 1, reverse A347705.
%Y A347462 counts possible reverse-alternating products of partitions.
%Y Cf. A025047, A067661, A119620, A344654, A344740, A347439, A347440, A347448, A347450, A347451, A347461, A347463, A347704.
%K nonn
%O 0,3
%A _Gus Wiseman_, Sep 14 2021