login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A343138 Array A(k, n) read by descending antidiagonals: A(k, n) = Sum_{m=0..n} F(k, m)^2, where F are the k-generalized Fibonacci numbers A092921. 2
0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 6, 2, 1, 0, 1, 5, 15, 6, 2, 1, 0, 1, 6, 40, 22, 6, 2, 1, 0, 1, 7, 104, 71, 22, 6, 2, 1, 0, 1, 8, 273, 240, 86, 22, 6, 2, 1, 0, 1, 9, 714, 816, 311, 86, 22, 6, 2, 1, 0, 1, 10, 1870, 2752, 1152, 342, 86, 22, 6, 2, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
REFERENCES
Greg Dresden and Yichen Wang, Sums and convolutions of k-bonacci and k-Lucas numbers, draft 2021.
LINKS
Russell Jay Hendel, Sums of Squares: Methods for Proving Identity Families, arXiv:2103.16756 [math.NT], 2021
FORMULA
Russell Jay Hendel gives the following representation, valid for k >= 2:
A(n, k) = Sum_{m=0..n} F(k, m)^2 = (1/(2*k-2)) * (2*Sum_{j=1..k-1}(j*Sum_{m=j+1..k} (m-k+1) * F(k, n+j) * F(k, n+m)) - Sum_{j=1..k}(A343125(k, j-1) * F(k, n+j)^2) + (k - 2)). - Peter Luschny, Apr 07 2021
EXAMPLE
Array starts:
n = 0 1 2 3 4 5 6 7 8 9 10
------------------------------------------------------------
[k=0] 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [A057427]
[k=1] 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... [A001477]
[k=2] 0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, ... [A001654]
[k=3] 0, 1, 2, 6, 22, 71, 240, 816, 2752, 9313, 31514, ... [A107239]
[k=4] 0, 1, 2, 6, 22, 86, 311, 1152, 4288, 15952, 59216, ...
[k=5] 0, 1, 2, 6, 22, 86, 342, 1303, 5024, 19424, 75120, ...
[k=6] 0, 1, 2, 6, 22, 86, 342, 1366, 5335, 20960, 82464, ...
[k=7] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21591, 85600, ...
[k=8] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 86871, ...
[k=9] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, ...
[...]
[ oo] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, ... [A047849]
Note that the first parameter in A(k, n) refers to rows, and the second parameter refers to columns, as always. The usual naming convention for the indices is not adhered to because the row sequences are the sums of the squares of the k-bonacci numbers.
MAPLE
F := (k, n) -> (F(k, n) := `if`(n<2, n, add(F(k, n-j), j = 1..min(k, n)))):
A := (k, n) -> add(F(k, m)^2, m = 0..n):
seq(seq(A(k, n-k), k=0..n), n = 0..11);
# The following two functions implement Russell Jay Hendel's formula for k >= 2:
T := (k, n) -> (n + 3)*(k - n) - 4:
H := (k, n) -> (2*add(j*add((m-k+1)*F(k, n+j)*F(k, n+m), m = j+1..k), j = 1..k-1)
- add(T(k, j-1)*F(k, n+j)^2, j = 1..k) + (k - 2))/(2*k - 2):
seq(lprint([k], seq(H(k, n), n = 0..11)), k=2..9); # Peter Luschny, Apr 07 2021
MATHEMATICA
A343138[k_, len_] := Take[Accumulate[LinearRecurrence[PadLeft[{1}, k, 1], PadLeft[{1}, k], len + k]^2], -len - 2];
A343138[0, len_] := Table[Boole[n != 0], {n, 0, len}];
A343138[1, len_] := Table[n, {n, 0, len}];
(* Table: *) Table[A343138[k, 12], {k, 0, 9}]
(* Sequence / descending antidiagonals: *)
Table[Table[Take[A343138[j, 12], {k + 1 - j, k + 1 - j}], {j, 0, k}], {k, 0, 10}] // Flatten (* Georg Fischer, Apr 08 2021 *)
CROSSREFS
Sequence in context: A360763 A332670 A118344 * A119270 A267109 A341524
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Luschny, Apr 06 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 9 14:31 EDT 2024. Contains 374187 sequences. (Running on oeis4.)