OFFSET
0,8
REFERENCES
Greg Dresden and Yichen Wang, Sums and convolutions of k-bonacci and k-Lucas numbers, draft 2021.
LINKS
Russell Jay Hendel, Sums of Squares: Methods for Proving Identity Families, arXiv:2103.16756 [math.NT], 2021
FORMULA
Russell Jay Hendel gives the following representation, valid for k >= 2:
A(n, k) = Sum_{m=0..n} F(k, m)^2 = (1/(2*k-2)) * (2*Sum_{j=1..k-1}(j*Sum_{m=j+1..k} (m-k+1) * F(k, n+j) * F(k, n+m)) - Sum_{j=1..k}(A343125(k, j-1) * F(k, n+j)^2) + (k - 2)). - Peter Luschny, Apr 07 2021
EXAMPLE
Array starts:
n = 0 1 2 3 4 5 6 7 8 9 10
------------------------------------------------------------
[k=0] 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [A057427]
[k=1] 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... [A001477]
[k=2] 0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, ... [A001654]
[k=3] 0, 1, 2, 6, 22, 71, 240, 816, 2752, 9313, 31514, ... [A107239]
[k=4] 0, 1, 2, 6, 22, 86, 311, 1152, 4288, 15952, 59216, ...
[k=5] 0, 1, 2, 6, 22, 86, 342, 1303, 5024, 19424, 75120, ...
[k=6] 0, 1, 2, 6, 22, 86, 342, 1366, 5335, 20960, 82464, ...
[k=7] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21591, 85600, ...
[k=8] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 86871, ...
[k=9] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, ...
[...]
[ oo] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, ... [A047849]
Note that the first parameter in A(k, n) refers to rows, and the second parameter refers to columns, as always. The usual naming convention for the indices is not adhered to because the row sequences are the sums of the squares of the k-bonacci numbers.
MAPLE
F := (k, n) -> (F(k, n) := `if`(n<2, n, add(F(k, n-j), j = 1..min(k, n)))):
A := (k, n) -> add(F(k, m)^2, m = 0..n):
seq(seq(A(k, n-k), k=0..n), n = 0..11);
# The following two functions implement Russell Jay Hendel's formula for k >= 2:
T := (k, n) -> (n + 3)*(k - n) - 4:
H := (k, n) -> (2*add(j*add((m-k+1)*F(k, n+j)*F(k, n+m), m = j+1..k), j = 1..k-1)
- add(T(k, j-1)*F(k, n+j)^2, j = 1..k) + (k - 2))/(2*k - 2):
seq(lprint([k], seq(H(k, n), n = 0..11)), k=2..9); # Peter Luschny, Apr 07 2021
MATHEMATICA
A343138[k_, len_] := Take[Accumulate[LinearRecurrence[PadLeft[{1}, k, 1], PadLeft[{1}, k], len + k]^2], -len - 2];
A343138[0, len_] := Table[Boole[n != 0], {n, 0, len}];
A343138[1, len_] := Table[n, {n, 0, len}];
(* Table: *) Table[A343138[k, 12], {k, 0, 9}]
(* Sequence / descending antidiagonals: *)
Table[Table[Take[A343138[j, 12], {k + 1 - j, k + 1 - j}], {j, 0, k}], {k, 0, 10}] // Flatten (* Georg Fischer, Apr 08 2021 *)
CROSSREFS
KEYWORD
AUTHOR
Peter Luschny, Apr 06 2021
STATUS
approved