login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343138
Array A(k, n) read by descending antidiagonals: A(k, n) = Sum_{m=0..n} F(k, m)^2, where F are the k-generalized Fibonacci numbers A092921.
2
0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 6, 2, 1, 0, 1, 5, 15, 6, 2, 1, 0, 1, 6, 40, 22, 6, 2, 1, 0, 1, 7, 104, 71, 22, 6, 2, 1, 0, 1, 8, 273, 240, 86, 22, 6, 2, 1, 0, 1, 9, 714, 816, 311, 86, 22, 6, 2, 1, 0, 1, 10, 1870, 2752, 1152, 342, 86, 22, 6, 2, 1, 0
OFFSET
0,8
REFERENCES
Greg Dresden and Yichen Wang, Sums and convolutions of k-bonacci and k-Lucas numbers, draft 2021.
LINKS
Russell Jay Hendel, Sums of Squares: Methods for Proving Identity Families, arXiv:2103.16756 [math.NT], 2021
FORMULA
Russell Jay Hendel gives the following representation, valid for k >= 2:
A(n, k) = Sum_{m=0..n} F(k, m)^2 = (1/(2*k-2)) * (2*Sum_{j=1..k-1}(j*Sum_{m=j+1..k} (m-k+1) * F(k, n+j) * F(k, n+m)) - Sum_{j=1..k}(A343125(k, j-1) * F(k, n+j)^2) + (k - 2)). - Peter Luschny, Apr 07 2021
EXAMPLE
Array starts:
n = 0 1 2 3 4 5 6 7 8 9 10
------------------------------------------------------------
[k=0] 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [A057427]
[k=1] 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... [A001477]
[k=2] 0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, ... [A001654]
[k=3] 0, 1, 2, 6, 22, 71, 240, 816, 2752, 9313, 31514, ... [A107239]
[k=4] 0, 1, 2, 6, 22, 86, 311, 1152, 4288, 15952, 59216, ...
[k=5] 0, 1, 2, 6, 22, 86, 342, 1303, 5024, 19424, 75120, ...
[k=6] 0, 1, 2, 6, 22, 86, 342, 1366, 5335, 20960, 82464, ...
[k=7] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21591, 85600, ...
[k=8] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 86871, ...
[k=9] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, ...
[...]
[ oo] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, ... [A047849]
Note that the first parameter in A(k, n) refers to rows, and the second parameter refers to columns, as always. The usual naming convention for the indices is not adhered to because the row sequences are the sums of the squares of the k-bonacci numbers.
MAPLE
F := (k, n) -> (F(k, n) := `if`(n<2, n, add(F(k, n-j), j = 1..min(k, n)))):
A := (k, n) -> add(F(k, m)^2, m = 0..n):
seq(seq(A(k, n-k), k=0..n), n = 0..11);
# The following two functions implement Russell Jay Hendel's formula for k >= 2:
T := (k, n) -> (n + 3)*(k - n) - 4:
H := (k, n) -> (2*add(j*add((m-k+1)*F(k, n+j)*F(k, n+m), m = j+1..k), j = 1..k-1)
- add(T(k, j-1)*F(k, n+j)^2, j = 1..k) + (k - 2))/(2*k - 2):
seq(lprint([k], seq(H(k, n), n = 0..11)), k=2..9); # Peter Luschny, Apr 07 2021
MATHEMATICA
A343138[k_, len_] := Take[Accumulate[LinearRecurrence[PadLeft[{1}, k, 1], PadLeft[{1}, k], len + k]^2], -len - 2];
A343138[0, len_] := Table[Boole[n != 0], {n, 0, len}];
A343138[1, len_] := Table[n, {n, 0, len}];
(* Table: *) Table[A343138[k, 12], {k, 0, 9}]
(* Sequence / descending antidiagonals: *)
Table[Table[Take[A343138[j, 12], {k + 1 - j, k + 1 - j}], {j, 0, k}], {k, 0, 10}] // Flatten (* Georg Fischer, Apr 08 2021 *)
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Luschny, Apr 06 2021
STATUS
approved