The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A343139 Numbers k that satisfy the condition digitsum(k) = digitsum(pi(k)) where pi is the prime counting function. 1
 15, 27, 51, 63, 120, 130, 131, 142, 153, 164, 208, 218, 230, 242, 252, 262, 263, 274, 305, 318, 327, 338, 348, 360, 370, 381, 392, 413, 424, 435, 446, 456, 457, 702, 712, 722, 732, 805, 860, 901, 912, 922, 932, 1016, 1027, 1038, 1039, 1048, 1049, 1059, 1071, 1080 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(7) = 131 is the first prime in this sequence. A033548 (Honaker primes) is a subsequence of this sequence. LINKS David A. Corneth, Table of n, a(n) for n = 1..10000 EXAMPLE 153 is a term because the number of primes up to 153 is 36 and 1 + 5 + 3 = 9 = 3 + 6. 435 is a term because number of primes up to 435 is 84 and 4 + 3 + 5 = 12 = 8 + 4. MATHEMATICA fHQ[n_] := Plus @@ IntegerDigits@n == Plus @@ IntegerDigits@PrimePi@n; Select[Range[3000], fHQ[#] &] PROG (PARI) for(n=1, 5000, if(sumdigits(n)==vecsum(digits(primepi(n))), print1(n, ", " ))); (PARI)  upto(n) = { my(q = 2, ulim = nextprime(n), pi = 0, res = List()); forprime(p = 3, ulim, pi++; for(i = q, p-1, if(sumdigits(i) == sumdigits(pi), listput(res, i) ) ); q = p ); res } \\ David A. Corneth, May 26 2021 (Python) from sympy import primepi def sd(n): return sum(map(int, str(n))) def ok(n): return sd(n) == sd(primepi(n)) print(list(filter(ok, range(1, 1081)))) # Michael S. Branicky, May 28 2021 CROSSREFS Cf. A000720, A007953, A010846, A033548, A033549. Sequence in context: A110978 A274433 A227804 * A087719 A174216 A249874 Adjacent sequences:  A343136 A343137 A343138 * A343141 A343142 A343144 KEYWORD nonn,easy,base AUTHOR K. D. Bajpai, Apr 06 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 15:36 EDT 2021. Contains 345025 sequences. (Running on oeis4.)