|
|
A119270
|
|
Triangle: number of exactly (m-1)-dimensional partitions of n, up to conjugacy, for n >= 1, m >= 0.
|
|
5
|
|
|
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 5, 5, 2, 1, 0, 1, 7, 11, 6, 2, 1, 0, 1, 11, 21, 16, 6, 2, 1, 0, 1, 15, 39, 38, 18, 6, 2, 1, 0, 1, 21, 73, 86, 51, 19, 6, 2, 1, 0, 1, 28, 129, 193, 135, 57, 19, 6, 2, 1, 0, 1, 39, 227, 420, 352, 170, 59, 19, 6, 2, 1, 0, 1, 51, 390, 890, 894
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,9
|
|
COMMENTS
|
The partition of 1 is considered to be dimension -1 by convention.
Partitions are considered as generalized Ferrers diagrams; any permutation of the axes produces a conjugate.
|
|
LINKS
|
Table of n, a(n) for n=1..84.
|
|
FORMULA
|
a(n,m) = A119269(n,m)-A119269(n,m-1).
|
|
EXAMPLE
|
Table starts:
1
0,1
0,1,1
0,1,2,1
0,1,3,2,1
|
|
CROSSREFS
|
Cf. A119269, A119271.
Reversed triangle is A119339. Columns stabilize to A118364.
Sequence in context: A244003 A332670 A118344 * A267109 A175804 A241063
Adjacent sequences: A119267 A119268 A119269 * A119271 A119272 A119273
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Franklin T. Adams-Watters, May 11 2006
|
|
EXTENSIONS
|
More terms from Max Alekseyev, May 15 2006
|
|
STATUS
|
approved
|
|
|
|