

A119270


Triangle: number of exactly (m1)dimensional partitions of n, up to conjugacy, for n >= 1, m >= 0.


5



1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 5, 5, 2, 1, 0, 1, 7, 11, 6, 2, 1, 0, 1, 11, 21, 16, 6, 2, 1, 0, 1, 15, 39, 38, 18, 6, 2, 1, 0, 1, 21, 73, 86, 51, 19, 6, 2, 1, 0, 1, 28, 129, 193, 135, 57, 19, 6, 2, 1, 0, 1, 39, 227, 420, 352, 170, 59, 19, 6, 2, 1, 0, 1, 51, 390, 890, 894
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,9


COMMENTS

The partition of 1 is considered to be dimension 1 by convention.
Partitions are considered as generalized Ferrers diagrams; any permutation of the axes produces a conjugate.


LINKS



FORMULA



EXAMPLE

Table starts:
1
0,1
0,1,1
0,1,2,1
0,1,3,2,1


CROSSREFS



KEYWORD



AUTHOR



EXTENSIONS



STATUS

approved



