The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A340848 a(n) is the number of edges in the diagram of the symmetric representation of sigma(n) with subparts. 3
 4, 6, 8, 10, 10, 14, 12, 14, 16, 16, 14, 24, 14, 18, 24, 22, 16, 28, 16, 26, 26, 22, 18, 36, 24, 22, 28, 30, 20, 44, 20, 30 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Since the diagram is symmetric so all terms are even numbers. For another version see A340846 from which first differs at a(6). For the definition of subparts see A279387. For more information about the subparts see also A237271, A280850, A280851, A296508, A335616. Note that in this version of the diagram of the symmetric representation of sigma(n) all regions are called "subparts". The number of subparts equals A001227(n). LINKS FORMULA a(n) = A340847(n) + A001227(n) - 1 (Euler's formula). EXAMPLE Illustration of initial terms: .                                                          _ _ _ _ .                                            _ _ _        |_ _ _  |_ .                                _ _ _      |_ _ _|             | |_|_ .                      _ _      |_ _  |_          |_ _          |_ _  | .              _ _    |_ _|_        |_  |           | |             | | .        _    |_  |       | |         | |           | |             | | .       |_|     |_|       |_|         |_|           |_|             |_| . n:       1      2        3          4           5               6 a(n):    4      6        8         10          10              14 . For n = 6 the diagram has 14 edges so a(6) = 14. On the other hand the diagram has 13 vertices and two subparts or regions, so applying Euler's formula we have that a(6) = 13 + 2 - 1 = 14. .                                                  _ _ _ _ _ .                            _ _ _ _ _            |_ _ _ _ _| .        _ _ _ _            |_ _ _ _  |                     |_ _ .       |_ _ _ _|                   | |_                    |_  | .               |_                  |_  |_ _                  |_|_ _ .                 |_ _                |_ _  |                     | | .                   | |                   | |                     | | .                   | |                   | |                     | | .                   | |                   | |                     | | .                   |_|                   |_|                     |_| . n:              7                    8                      9 a(n):          12                   14                     16 . For n = 9 the diagram has 16 edges so a(9) = 16. On the other hand the diagram has 14 vertices and three subparts or regions, so applying Euler's formula we have that a(9) = 14 + 3 - 1 = 16. Another way for the illustration of initial terms is as follows: -------------------------------------------------------------------------- .  n  a(n)                             Diagram --------------------------------------------------------------------------             _    1   4   |_|  _               _| |  _    2   6     |_ _| | |  _                 _ _|_| | |  _    3   8       |_ _|  _| | | |  _                   _ _|  _| | | | |  _    4  10         |_ _ _|  _|_| | | | |  _                     _ _ _|  _ _| | | | | |  _    5  10           |_ _ _| |  _ _| | | | | | |  _                       _ _ _| |_|  _|_| | | | | | |  _    6  14             |_ _ _ _|  _|  _ _| | | | | | | |  _                         _ _ _ _|  _|  _ _| | | | | | | | |  _    7  12               |_ _ _ _| |  _|  _ _|_| | | | | | | | |  _                           _ _ _ _| |  _| |  _ _| | | | | | | | | |  _    8  14                 |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |  _                             _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |    9  16                   |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | |                               _ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | |   10  16                     |_ _ _ _ _ _| |  _|  _| |  _ _|_| | | | | | |                                 _ _ _ _ _ _| |  _|  _| |  _ _ _| | | | | |   11  14                       |_ _ _ _ _ _| | |_ _|  _| |  _ _ _| | | | |                                   _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | |   12  24                         |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| |                                     _ _ _ _ _ _ _| |  _| |  _ _| |  _ _ _|   13  14                           |_ _ _ _ _ _ _| | |  _| |_|  _| |                                       _ _ _ _ _ _ _| | |_ _|  _|  _|   14  18                             |_ _ _ _ _ _ _ _| |  _ _|  _|                                         _ _ _ _ _ _ _ _| |  _ _|   15  24                               |_ _ _ _ _ _ _ _| | |                                           _ _ _ _ _ _ _ _| |   16  22                                 |_ _ _ _ _ _ _ _ _| ... CROSSREFS Cf. A001227 (number of subparts or regions). Cf. A340847 (number of vertices). Cf. A340846 (number of edges in the diagram only with parts). Cf. A317292 (total number of edges in the unified diagram). Cf. A000203, A060831, A196020, A236104, A235791, A237048, A237270, A237591, A237593, A239660, A245092, A262626, A279387, A280850, A280851, A296508, A335616, A340833. Sequence in context: A340846 A167146 A020891 * A090967 A272475 A184016 Adjacent sequences:  A340845 A340846 A340847 * A340849 A340850 A340851 KEYWORD nonn,more AUTHOR Omar E. Pol, Jan 24 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 22:10 EDT 2021. Contains 343903 sequences. (Running on oeis4.)