login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340850
Dirichlet g.f.: Sum_{n>0} a(n)/n^s = zeta(s) * zeta(s-2) / (zeta(s-1))^2.
1
1, 1, 4, 5, 16, 4, 36, 21, 40, 16, 100, 20, 144, 36, 64, 85, 256, 40, 324, 80, 144, 100, 484, 84, 416, 144, 364, 180, 784, 64, 900, 341, 400, 256, 576, 200, 1296, 324, 576, 336, 1600, 144, 1764, 500, 640, 484, 2116, 340, 1800, 416, 1024, 720, 2704, 364, 1600, 756, 1296, 784
OFFSET
1,3
FORMULA
Multiplicative with a(1) = 1 and a(p^e) = (p^(2*e)-1) * (p-1) / (p+1) for prime p and e > 0.
Dirichlet convolution of A002618 and A023900.
Dirichlet convolution of A001157 and A328722.
Dirichlet inverse b(n) for n > 0 is multiplicative with b(1) = 1 and b(p^e) = -(p-1)^2 * e * p^(e-1) for prime p and e > 0.
Dirichlet convolution with A060640 equals A007433.
Dirichlet convolution with A018804 equals A000290.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 12*zeta(3)/Pi^4 = 0.148083... . - Amiram Eldar, Oct 16 2022
MATHEMATICA
f[p_, e_] := (p^(2*e) - 1)*(p - 1)/(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 24 2021 *)
KEYWORD
nonn,easy,mult
AUTHOR
Werner Schulte, Jan 24 2021
STATUS
approved