OFFSET
1,1
COMMENTS
If A001227(n) is odd then a(n) is even.
If A001227(n) is even then a(n) is odd.
The above sentences arise that the diagram is always symmetric for any value of n hence the number of edges is always an even number. Also from Euler's formula.
For another version see A340833 from which first differs at a(6).
For the definition of subparts see A279387. For more information about the subparts see also A237271, A280850, A280851, A296508, A335616.
Note that in this version of the diagram of the symmetric representation of sigma(n) all regions are called "subparts". The number of subparts equals A001227(n).
MAPLE
Illustration of initial terms:
. _ _ _ _
. _ _ _ |_ _ _ |_
. _ _ _ |_ _ _| | |_|_
. _ _ |_ _ |_ |_ _ |_ _ |
. _ _ |_ _|_ |_ | | | | |
. _ |_ | | | | | | | | |
. |_| |_| |_| |_| |_| |_|
.
n: 1 2 3 4 5 6
a(n): 4 6 7 10 9 13
.
For n = 6 the diagram has 13 vertices so a(6) = 13.
On the other hand the diagram has 14 edges and two subparts or regions, so applying Euler's formula we have that a(6) = 14 - 2 + 1 = 13.
.
. _ _ _ _ _
. _ _ _ _ _ |_ _ _ _ _|
. _ _ _ _ |_ _ _ _ | |_ _
. |_ _ _ _| | |_ |_ |
. |_ |_ |_ _ |_|_ _
. |_ _ |_ _ | | |
. | | | | | |
. | | | | | |
. | | | | | |
. |_| |_| |_|
.
n: 7 8 9
a(n): 11 14 14
.
For n = 9 the diagram has 14 vertices so a(9) = 14.
On the other hand the diagram has 16 edges and three subparts or regions, so applying Euler's formula we have that a(9) = 16 - 3 + 1 = 14.
Another way for the illustration of initial terms is as follows:
--------------------------------------------------------------------------
. n a(n) Diagram
--------------------------------------------------------------------------
_
1 4 |_| _
_| | _
2 6 |_ _| | | _
_ _|_| | | _
3 7 |_ _| _| | | | _
_ _| _| | | | | _
4 10 |_ _ _| _|_| | | | | _
_ _ _| _ _| | | | | | _
5 9 |_ _ _| | _ _| | | | | | | _
_ _ _| |_| _|_| | | | | | | _
6 13 |_ _ _ _| _| _ _| | | | | | | | _
_ _ _ _| _| _ _| | | | | | | | | _
7 11 |_ _ _ _| | _| _ _|_| | | | | | | | | _
_ _ _ _| | _| | _ _| | | | | | | | | | _
8 14 |_ _ _ _ _| |_ _| | _ _| | | | | | | | | | | _
_ _ _ _ _| _ _|_| _ _|_| | | | | | | | | | |
9 14 |_ _ _ _ _| | _| _| _ _ _| | | | | | | | | |
_ _ _ _ _| | _| _| _ _ _| | | | | | | | |
10 15 |_ _ _ _ _ _| | _| _| | _ _|_| | | | | | |
_ _ _ _ _ _| | _| _| | _ _ _| | | | | |
11 13 |_ _ _ _ _ _| | |_ _| _| | _ _ _| | | | |
_ _ _ _ _ _| | _ _| _|_| _ _ _|_| | |
12 23 |_ _ _ _ _ _ _| | _ _| _ _| | _ _ _| |
_ _ _ _ _ _ _| | _| | _ _| | _ _ _|
13 13 |_ _ _ _ _ _ _| | | _| |_| _| |
_ _ _ _ _ _ _| | |_ _| _| _|
14 17 |_ _ _ _ _ _ _ _| | _ _| _|
_ _ _ _ _ _ _ _| | _ _|
15 21 |_ _ _ _ _ _ _ _| | |
_ _ _ _ _ _ _ _| |
16 22 |_ _ _ _ _ _ _ _ _|
...
CROSSREFS
Cf. A001227 (number of subparts or regions).
Cf. A340848 (number of edges).
Cf. A340833 (numer of vertices in the diagram only with parts).
Cf. A317293 (total number of vertices in the unified diagram).
KEYWORD
nonn,more
AUTHOR
Omar E. Pol, Jan 24 2021
STATUS
approved