login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A340846 a(n) is the number of edges in the diagram of the symmetric representation of sigma(n). 4
4, 6, 8, 10, 10, 12, 12, 14, 16, 16, 14, 18, 14, 18, 22, 22, 16, 22, 16, 22, 26, 22, 18, 26, 24, 22, 28, 28, 20, 30, 20, 30 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Since the diagram is symmetric so all terms are even numbers.

For another version with subparts see A340848 from which first differs at a(6).

LINKS

Table of n, a(n) for n=1..32.

FORMULA

a(n) = A340833(n) + A237271(n) - 1 (Euler's formula).

EXAMPLE

Illustration of initial terms:

.                                                          _ _ _ _

.                                            _ _ _        |_ _ _  |_

.                                _ _ _      |_ _ _|             |   |_

.                      _ _      |_ _  |_          |_ _          |_ _  |

.              _ _    |_ _|_        |_  |           | |             | |

.        _    |_  |       | |         | |           | |             | |

.       |_|     |_|       |_|         |_|           |_|             |_|

.

n:       1      2        3          4           5               6

a(n):    4      6        8         10          10              12

.

For n = 6 the diagram has 12 edges so a(6) = 12.

On the other hand the diagram has 12 vertices and only one part or region, so applying Euler's formula we have that a(6) = 12 + 1 - 1 = 12.

.                                                  _ _ _ _ _

.                            _ _ _ _ _            |_ _ _ _ _|

.        _ _ _ _            |_ _ _ _  |                     |_ _

.       |_ _ _ _|                   | |_                    |_  |

.               |_                  |_  |_ _                  |_|_ _

.                 |_ _                |_ _  |                     | |

.                   | |                   | |                     | |

.                   | |                   | |                     | |

.                   | |                   | |                     | |

.                   |_|                   |_|                     |_|

.

n:              7                    8                      9

a(n):          12                   14                     16

.

For n = 9 the diagram has 16 edges so a(9) = 16.

On the other hand the diagram has 14 vertices and three parts or regions, so applying Euler's formula we have that a(9) = 14 + 3 - 1 = 16.

Another way for the illustration of initial terms is as follows:

--------------------------------------------------------------------------

.  n  a(n)                             Diagram

--------------------------------------------------------------------------

            _

   1   4   |_|  _

              _| |  _

   2   6     |_ _| | |  _

                _ _|_| | |  _

   3   8       |_ _|  _| | | |  _

                  _ _|  _| | | | |  _

   4  10         |_ _ _|  _|_| | | | |  _

                    _ _ _|  _ _| | | | | |  _

   5  10           |_ _ _| |    _| | | | | | |  _

                      _ _ _|  _|  _|_| | | | | | |  _

   6  12             |_ _ _ _|  _|  _ _| | | | | | | |  _

                        _ _ _ _|  _|  _ _| | | | | | | | |  _

   7  12               |_ _ _ _| |  _|  _ _|_| | | | | | | | |  _

                          _ _ _ _| |  _| |  _ _| | | | | | | | | |  _

   8  14                 |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |  _

                            _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |

   9  16                   |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | |

                              _ _ _ _ _| |  _|  _|    _ _| | | | | | | | |

  10  16                     |_ _ _ _ _ _| |  _|     |  _ _|_| | | | | | |

                                _ _ _ _ _ _| |      _| |  _ _ _| | | | | |

  11  14                       |_ _ _ _ _ _| |  _ _|  _| |  _ _ _| | | | |

                                  _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | |

  12  18                         |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| |

                                    _ _ _ _ _ _ _| |  _| |    _| |  _ _ _|

  13  14                           |_ _ _ _ _ _ _| | |  _|  _|  _| |

                                      _ _ _ _ _ _ _| | |_ _|  _|  _|

  14  18                             |_ _ _ _ _ _ _ _| |  _ _|  _|

                                        _ _ _ _ _ _ _ _| |  _ _|

  15  22                               |_ _ _ _ _ _ _ _| | |

                                          _ _ _ _ _ _ _ _| |

  16  22                                 |_ _ _ _ _ _ _ _ _|

...

CROSSREFS

Cf. A237271 (number of parts or regions).

Cf. A340833 (number of vertices).

Cf. A340848 (number of edges in the diagram with subparts).

Cf. A317109 (total number of edges in the unified diagram).

Cf. A239931-A239934 (illustration of first 32 diagrams).

Cf. A000203, A005843, A196020, A236104, A235791, A237048, A237270, A237590, A237591, A237593, A239660, A245092, A262626, A340847.

Sequence in context: A087789 A071830 A276982 * A167146 A020891 A340848

Adjacent sequences:  A340843 A340844 A340845 * A340847 A340848 A340849

KEYWORD

nonn,more

AUTHOR

Omar E. Pol, Jan 24 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 20:41 EDT 2021. Contains 343829 sequences. (Running on oeis4.)