The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A340843 Emirps p such that p+(sum of digits of p) and reverse(p)+(sum of digits of p) are emirps. 2
 1933, 3391, 32687, 78623, 104087, 109891, 112103, 120283, 123127, 135469, 136217, 161983, 162209, 162391, 163819, 179779, 193261, 198613, 198901, 301211, 316819, 316891, 382021, 389161, 712631, 721321, 726487, 738349, 780401, 784627, 902261, 918361, 918613, 943837, 964531, 977971, 1002247 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Robert Israel, Table of n, a(n) for n = 1..1000 EXAMPLE a(3) = 32687 is an emirp because 32687 and 78623 are distinct primes. The sum of digits of 32687 is 26. 32687+26 = 32713 and 78623+26 = 78649 are emirps because 32713 and 31723 are distinct primes, as are 78649 and 94687. MAPLE revdigs:= proc(n) local L, i;   L:= convert(n, base, 10);   add(10^(i-1)*L[-i], i=1..nops(L)) end proc: filter:= proc(n) local r, t, n2, n3; if not isprime(n) then return false fi; r:= revdigs(n); if r = n or not isprime(r) then return false fi; t:= convert(convert(n, base, 10), `+`); for n2 in [n+t, r+t] do   if not isprime(n2) then return false fi;   r:= revdigs(n2);   if r = n2 or not isprime(r) then return false fi; od; true end proc: select(filter, [seq(i, i=13..10^6, 2)]); PROG (Python) from sympy import isprime def sd(n): return sum(map(int, str(n))) def emirp(n):   if not isprime(n): return False   revn = int(str(n)[::-1])   if n == revn: return False   return isprime(revn) def ok(n):   if not emirp(n): return False   if not emirp(n + sd(n)): return False   revn = int(str(n)[::-1])   return emirp(revn + sd(revn)) def aupto(nn): return [m for m in range(1, nn+1) if ok(m)] print(aupto(920000)) # Michael S. Branicky, Jan 24 2021 CROSSREFS Cf. A006567. Contained in A340842. Sequence in context: A227491 A277943 A251945 * A270265 A237010 A256765 Adjacent sequences:  A340840 A340841 A340842 * A340844 A340845 A340846 KEYWORD nonn,base AUTHOR J. M. Bergot and Robert Israel, Jan 23 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 18:40 EST 2022. Contains 350611 sequences. (Running on oeis4.)