login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071830
Smallest k > n such that Lpf(n) = Lpf(k) where Lpf(x) denotes the largest prime factor in x factorization.
3
4, 6, 8, 10, 9, 14, 16, 12, 15, 22, 18, 26, 21, 20, 32, 34, 24, 38, 25, 28, 33, 46, 27, 30, 39, 36, 35, 58, 40, 62, 64, 44, 51, 42, 48, 74, 57, 52, 45, 82, 49, 86, 55, 50, 69, 94, 54, 56, 60, 68, 65, 106, 72, 66, 63, 76, 87, 118, 75, 122, 93, 70, 128, 78, 77, 134, 85, 92
OFFSET
2,1
COMMENTS
From Rémy Sigrist, Jun 03 2017: (Start)
This sequence is a permutation of the composite numbers (A002808).
a(p) = 2*p for any prime p.
a(2^k) = 2^(k+1) for any n > 0.
For any prime p and n >= 0, a^n(p)/p is the (n+1)-th p-smooth number (where a^n denotes the n-th iterate of a).
a(n) <= 2*n for any n > 1 (as Lpf(2*n) = Lpf(n)).
See also A287932 for the least prime factor equivalent.
(End)
LINKS
FORMULA
a(n) = A071829(n) + n. - Sean A. Irvine, Aug 16 2024
MATHEMATICA
Array[Which[PrimeQ[#], 2 #, IntegerQ@ Log2[#], 2^(IntegerExponent[#, 2] + 1), True, If[#1 <= #2^2, (#1/#2 + 1) #2, Block[{k = #1/#2 + 1}, While[FactorInteger[k][[-1, 1]] > #2, k++]; k #2]] & @@ {#, FactorInteger[#][[-1, 1]]}] &[#] &, 68, 2] (* Michael De Vlieger, Nov 03 2021 *)
Lpf[x_]:=FactorInteger[x][[-1, 1]]; Array[(k=#; While[Lpf@#!=Lpf@++k]; k)&, 68, 2] (* Giorgos Kalogeropoulos, Nov 03 2021 *)
PROG
(PARI) for(n=2, 120, s=+1; while(abs(component(component(factor(n), 1), omega(n))-component(component(factor(n+s), 1), omega(n+s)))>0, s++); print1(n+s, ", "))
(PARI) a(n) = { my(f = factor(n)[, 1], h = f[#f], s = n\h); for(i = s+1, oo, c = factor(i)[, 1]; if(c[#c] <= h, return(i*h) ) ) } \\ David A. Corneth, Nov 03 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Jun 08 2002
STATUS
approved