The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071830 Smallest k > n such that Lpf(n) = Lpf(k) where Lpf(x) denotes the largest prime factor in x factorization. 3
4, 6, 8, 10, 9, 14, 16, 12, 15, 22, 18, 26, 21, 20, 32, 34, 24, 38, 25, 28, 33, 46, 27, 30, 39, 36, 35, 58, 40, 62, 64, 44, 51, 42, 48, 74, 57, 52, 45, 82, 49, 86, 55, 50, 69, 94, 54, 56, 60, 68, 65, 106, 72, 66, 63, 76, 87, 118, 75, 122, 93, 70, 128, 78, 77, 134, 85, 92 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
From Rémy Sigrist, Jun 03 2017: (Start)
This sequence is a permutation of the composite numbers (A002808).
a(p) = 2*p for any prime p.
a(2^k) = 2^(k+1) for any n > 0.
For any prime p and n >= 0, a^n(p)/p is the (n+1)-th p-smooth number (where a^n denotes the n-th iterate of a).
a(n) <= 2*n for any n > 1 (as Lpf(2*n) = Lpf(n)).
See also A287932 for the least prime factor equivalent.
(End)
LINKS
MATHEMATICA
Array[Which[PrimeQ[#], 2 #, IntegerQ@ Log2[#], 2^(IntegerExponent[#, 2] + 1), True, If[#1 <= #2^2, (#1/#2 + 1) #2, Block[{k = #1/#2 + 1}, While[FactorInteger[k][[-1, 1]] > #2, k++]; k #2]] & @@ {#, FactorInteger[#][[-1, 1]]}] &[#] &, 68, 2] (* Michael De Vlieger, Nov 03 2021 *)
Lpf[x_]:=FactorInteger[x][[-1, 1]]; Array[(k=#; While[Lpf@#!=Lpf@++k]; k)&, 68, 2] (* Giorgos Kalogeropoulos, Nov 03 2021 *)
PROG
(PARI) for(n=2, 120, s=+1; while(abs(component(component(factor(n), 1), omega(n))-component(component(factor(n+s), 1), omega(n+s)))>0, s++); print1(n+s, ", "))
(PARI) a(n) = { my(f = factor(n)[, 1], h = f[#f], s = n\h); for(i = s+1, oo, c = factor(i)[, 1]; if(c[#c] <= h, return(i*h) ) ) } \\ David A. Corneth, Nov 03 2021
CROSSREFS
Sequence in context: A161396 A145256 A087789 * A276982 A340846 A167146
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Jun 08 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 15:23 EDT 2024. Contains 373432 sequences. (Running on oeis4.)