Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Aug 16 2024 20:15:33
%S 4,6,8,10,9,14,16,12,15,22,18,26,21,20,32,34,24,38,25,28,33,46,27,30,
%T 39,36,35,58,40,62,64,44,51,42,48,74,57,52,45,82,49,86,55,50,69,94,54,
%U 56,60,68,65,106,72,66,63,76,87,118,75,122,93,70,128,78,77,134,85,92
%N Smallest k > n such that Lpf(n) = Lpf(k) where Lpf(x) denotes the largest prime factor in x factorization.
%C From _Rémy Sigrist_, Jun 03 2017: (Start)
%C This sequence is a permutation of the composite numbers (A002808).
%C a(p) = 2*p for any prime p.
%C a(2^k) = 2^(k+1) for any n > 0.
%C For any prime p and n >= 0, a^n(p)/p is the (n+1)-th p-smooth number (where a^n denotes the n-th iterate of a).
%C a(n) <= 2*n for any n > 1 (as Lpf(2*n) = Lpf(n)).
%C See also A287932 for the least prime factor equivalent.
%C (End)
%H Rémy Sigrist, <a href="/A071830/b071830.txt">Table of n, a(n) for n = 2..10000</a>
%F a(n) = A071829(n) + n. - _Sean A. Irvine_, Aug 16 2024
%t Array[Which[PrimeQ[#], 2 #, IntegerQ@ Log2[#], 2^(IntegerExponent[#, 2] + 1), True, If[#1 <= #2^2, (#1/#2 + 1) #2, Block[{k = #1/#2 + 1}, While[FactorInteger[k][[-1, 1]] > #2, k++]; k #2]] & @@ {#, FactorInteger[#][[-1, 1]]}] &[#] &, 68, 2] (* _Michael De Vlieger_, Nov 03 2021 *)
%t Lpf[x_]:=FactorInteger[x][[-1,1]];Array[(k=#;While[Lpf@#!=Lpf@++k];k)&,68,2] (* _Giorgos Kalogeropoulos_, Nov 03 2021 *)
%o (PARI) for(n=2,120,s=+1; while(abs(component(component(factor(n),1),omega(n))-component(component(factor(n+s),1),omega(n+s)))>0,s++); print1(n+s,","))
%o (PARI) a(n) = { my(f = factor(n)[,1], h = f[#f], s = n\h); for(i = s+1, oo, c = factor(i)[,1]; if(c[#c] <= h, return(i*h) ) ) } \\ _David A. Corneth_, Nov 03 2021
%Y Cf. A002808, A006530, A071829, A287932.
%K nonn,easy
%O 2,1
%A _Benoit Cloitre_, Jun 08 2002