The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090967 Given the sequence of the sums of the divisors of the semiprimes, this is the subsequence where each sum is an even number. 3
4, 6, 8, 10, 10, 14, 12, 16, 14, 20, 16, 22, 18, 26, 18, 22, 32, 20, 34, 24, 40, 28, 24, 22, 44, 46, 26, 50, 24, 34, 36, 56, 30, 26, 62, 64, 42, 28, 70, 36, 46, 30, 74, 48, 38, 76, 30, 52, 82, 32, 86, 34, 44, 58, 92, 48, 34, 100, 64, 36, 50, 104, 66, 106 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
This is the sequence of the sums of the divisors of the n-th semiprime, with all the odd entries removed. Goldbach's Conjecture states that this sequence will include all even integers greater than or equal to 4. This sequence is in some ways the order in which Goldbach's Conjecture is satisfied.
LINKS
EXAMPLE
a(7)=12 since the seventh semiprime whose two factors sum to an even number is 35, since 35=5*7 and 5+7=12.
MATHEMATICA
PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; PrimeFactorsAdded[n_] := Plus @@ Flatten[Table[ #[[1]]*#[[2]], {1}] & /@ FactorInteger[n]]; SumOfFactorsOfSemiprimes[n_] := Table[PrimeFactorsAdded[Part[Select[Range[n*n], PrimeFactorExponentsAdded[ # ] == 2 &], a]], {a, 1, n}]; GenerateA090967[n_] := Select[SumOfFactorsOfSemiprimes[n], Mod[ #, 2] == 0 &]; GenerateA090967[100] would give the first 100 terms of the sequence.
CROSSREFS
Sequence in context: A167146 A020891 A340848 * A349707 A272475 A184016
KEYWORD
nonn
AUTHOR
Ryan Witko (witko(AT)nyu.edu), Feb 27 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 12:27 EDT 2024. Contains 372712 sequences. (Running on oeis4.)