OFFSET
1,4
EXAMPLE
The pointed factorizations of n for n = 2, 4, 6, 8, 12, 24, 30:
((2)) ((4)) ((6)) ((8)) ((12)) ((24)) ((30))
((2)*2) ((2)*3) ((2)*4) ((2)*6) ((3)*8) ((5)*6)
(2*(3)) (2*(4)) (2*(6)) (3*(8)) (5*(6))
((2)*2*2) ((3)*4) ((4)*6) ((2)*15)
(3*(4)) (4*(6)) (2*(15))
((2)*2*3) ((2)*12) ((3)*10)
(2*2*(3)) (2*(12)) (3*(10))
((2)*2*6) ((2)*3*5)
(2*2*(6)) (2*(3)*5)
((2)*3*4) (2*3*(5))
(2*(3)*4)
(2*3*(4))
((2)*2*2*3)
(2*2*2*(3))
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Sum[Length[Union[fac]], {fac, facs[n]}], {n, 50}]
CROSSREFS
Allowing point (1) gives A057567.
Choosing a position instead of value gives A066637.
The ordered additive version is A336875.
A000005 counts divisors.
A001787 count normal multisets with a selected position.
A001792 counts compositions with a selected position.
A006128 counts partitions with a selected position.
A066186 count strongly normal multisets with a selected position.
A254577 counts ordered factorizations with a selected position.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 10 2021
STATUS
approved