login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339567
Numbers k such that A007088(k) == 1 (mod k).
2
1, 5, 15, 25, 55, 91, 137, 525, 625, 925, 3967, 5995, 7625, 10767, 25087, 57225, 68817, 565027, 591415, 2515825, 2757625, 4162019, 5276309, 96689255, 115686005, 133890625, 242899421, 492029715, 588620625, 1839399055, 7786281065, 11231388063, 17251448809, 71050380625
OFFSET
1,2
COMMENTS
All terms are odd.
EXAMPLE
a(3) = 15 is a term because 15 = 1111_2 and 1111 == 1 (mod 15).
MAPLE
filter:= t -> convert(t, binary) mod t = 1: filter(1):= true:
select(filter, [seq(i, i=1..10^7, 2)]);
MATHEMATICA
Block[{a = {1}, k}, Do[If[Mod[FromDigits@ IntegerDigits[i, 2], i] == 1, AppendTo[a, i]], {i, 2, 10^7}]; a] (* Michael De Vlieger, Dec 12 2020 *)
PROG
(PARI) isok(n) = Mod(fromdigits(binary(n)), n) == 1;
forstep(k=1, 10^7, 2, if(isok(k), print1(k, ", "))); \\ Daniel Suteu, Dec 12 2020
CROSSREFS
Sequence in context: A147495 A147426 A100437 * A067533 A110343 A146060
KEYWORD
nonn,base
AUTHOR
Robert Israel, Dec 09 2020
EXTENSIONS
a(30)-a(34) from Daniel Suteu, Dec 12 2020
STATUS
approved