login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that A007088(k) == 1 (mod k).
2

%I #22 Feb 10 2021 13:53:30

%S 1,5,15,25,55,91,137,525,625,925,3967,5995,7625,10767,25087,57225,

%T 68817,565027,591415,2515825,2757625,4162019,5276309,96689255,

%U 115686005,133890625,242899421,492029715,588620625,1839399055,7786281065,11231388063,17251448809,71050380625

%N Numbers k such that A007088(k) == 1 (mod k).

%C All terms are odd.

%e a(3) = 15 is a term because 15 = 1111_2 and 1111 == 1 (mod 15).

%p filter:= t -> convert(t,binary) mod t = 1: filter(1):= true:

%p select(filter, [seq(i,i=1..10^7,2)]);

%t Block[{a = {1}, k}, Do[If[Mod[FromDigits@ IntegerDigits[i, 2], i] == 1, AppendTo[a, i]], {i, 2, 10^7}]; a] (* _Michael De Vlieger_, Dec 12 2020 *)

%o (PARI) isok(n) = Mod(fromdigits(binary(n)), n) == 1;

%o forstep(k=1, 10^7, 2, if(isok(k), print1(k, ", "))); \\ _Daniel Suteu_, Dec 12 2020

%Y Cf. A007088, A339566.

%K nonn,base

%O 1,2

%A _Robert Israel_, Dec 09 2020

%E a(30)-a(34) from _Daniel Suteu_, Dec 12 2020