OFFSET
1,1
COMMENTS
Comment from N. J. A. Sloane, Dec 11 2020: (Start)
The initial values suggest the conjecture that this sequence consists exactly of Catalan(n) copies of 4^k for k >= 1.
Hugo Pfoertner tested this conjecture with the PARI program given below.
Here is the output from that program:
[1, 0, 4]
[2, 4, 16]
[4, 16, 64]
[9, 64, 256]
[23, 256, 1024]
[65, 1024, 4096]
[197, 4096, 16384]
[626, 16384, 65536]
[2056, 65536, 262144]
[6918, 262144, 1048576]
[23714, 1048576, 4194304]
The first column is A014137, the partial sums of the Catalan numbers, which is strong support for the conjecture.
The conjecture has now been proved by Raghavendra Tripathi - see link. (End)
LINKS
Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, arXiv:2012.04625 [math.CO], 2020-2021. See Section 2.8.
Raghavendra Tripathi, Proof of conjectured formula
EXAMPLE
The van der Corput sequence v(n), n >= 1, is 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, 1/16, 9/16, 5/16, 13/16, 3/16, 11/16, ... = A030101/A062383.
Then we construct the sequence b(n) = v(A014486(n)), n >= 1, which is 1/4, 5/16, 3/16, 21/64, 13/64, 19/64, 11/64, 7/64, ...
a(n) is the denominator of b(n), and A072800(n) is the numerator.
PROG
(PARI) \\ Program from Hugo Pfoertner for studying the connection with the Catalan numbers mentioned in the Comments.
a30101(n)=fromdigits(Vecrev(binary(n)), 2);
a62383(n)=1<<(log(2*n+1)\log(2));
is_a14486(n)={my(v=binary(n), t=0); for(i=1, #v, t+=if(v[i], 1, -1); if(t<0, return(0))); t==0};
A14486=[]; for(k=1, 5000000, if(is_a14486(k), A14486=concat(A14486, k)));
aprev=0; for(k=1, #A14486, my(j=A14486[k], a=denominator(a30101(j)/a62383(j))); if(a!=aprev, print([k, aprev, a]); aprev=a));
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Dec 09 2020
EXTENSIONS
More terms from Hugo Pfoertner, Dec 09 2020
STATUS
approved