login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339571
A133058 with duplicates removed.
0
1, 4, 8, 2, 12, 3, 24, 16, 21, 7, 27, 48, 32, 30, 15, 5, 34, 64, 36, 18, 54, 41, 80, 120, 45, 59, 104, 150, 75, 123, 91, 142, 194, 97, 151, 206, 262, 131, 189, 248, 308, 77, 139, 202, 266, 133, 199, 334, 167, 237, 380, 95, 169, 244, 320, 158, 79, 82, 164, 86
OFFSET
1,2
LINKS
Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, arXiv:2012.04625 [math.CO], Dec 08, 2020. See Section 2.6.
MATHEMATICA
DeleteDuplicates@ Block[{a = {1, 1}, k = 1}, Do[AppendTo[a, If[# == 1, a[[-1]] + i + 1, a[[-1]]/#]] &@ GCD[a[[-1]], i], {i, 2, 80}]; a] (* Michael De Vlieger, Dec 09 2020 *)
PROG
(PARI) lista(nn) = my(v=List([1]), x=1, y); print1(1); for(n=2, nn, if(!setsearch(Set(v), x=if(1==y=gcd(x, n), x+n+1, x/y)), print1(", ", x); listput(v, x))); \\ Jinyuan Wang, Dec 12 2020
(Python)
from math import gcd
from itertools import count, islice
def A339571_gen(): # generator of terms
a, aset = 1, {1}
yield 1
for n in count(2):
a = a+n+1 if (b:=gcd(a, n)) == 1 else a//b
if a not in aset:
aset.add(a)
yield a
A339571_list = list(islice(A339571_gen(), 30)) # Chai Wah Wu, Mar 18 2023
CROSSREFS
Cf. A133058.
Sequence in context: A163813 A109815 A372297 * A110653 A052309 A332905
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 09 2020
EXTENSIONS
More terms from Jinyuan Wang, Dec 12 2020
STATUS
approved