Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 18 2023 16:27:51
%S 1,4,8,2,12,3,24,16,21,7,27,48,32,30,15,5,34,64,36,18,54,41,80,120,45,
%T 59,104,150,75,123,91,142,194,97,151,206,262,131,189,248,308,77,139,
%U 202,266,133,199,334,167,237,380,95,169,244,320,158,79,82,164,86
%N A133058 with duplicates removed.
%H Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, <a href="https://arxiv.org/abs/2012.04625">Finding structure in sequences of real numbers via graph theory: a problem list</a>, arXiv:2012.04625 [math.CO], Dec 08, 2020. See Section 2.6.
%t DeleteDuplicates@ Block[{a = {1, 1}, k = 1}, Do[AppendTo[a, If[# == 1, a[[-1]] + i + 1, a[[-1]]/#]] &@ GCD[a[[-1]], i], {i, 2, 80}]; a] (* _Michael De Vlieger_, Dec 09 2020 *)
%o (PARI) lista(nn) = my(v=List([1]), x=1, y); print1(1); for(n=2, nn, if(!setsearch(Set(v), x=if(1==y=gcd(x, n), x+n+1, x/y)), print1(", ", x); listput(v, x))); \\ _Jinyuan Wang_, Dec 12 2020
%o (Python)
%o from math import gcd
%o from itertools import count, islice
%o def A339571_gen(): # generator of terms
%o a, aset = 1, {1}
%o yield 1
%o for n in count(2):
%o a = a+n+1 if (b:=gcd(a,n)) == 1 else a//b
%o if a not in aset:
%o aset.add(a)
%o yield a
%o A339571_list = list(islice(A339571_gen(),30)) # _Chai Wah Wu_, Mar 18 2023
%Y Cf. A133058.
%K nonn
%O 1,2
%A _N. J. A. Sloane_, Dec 09 2020
%E More terms from _Jinyuan Wang_, Dec 12 2020