login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339565
Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (1,1), (1,2), (2,1).
2
1, 3, 17, 101, 627, 3999, 25955, 170571, 1131433, 7559301, 50795985, 342935689, 2324278669, 15804931797, 107775401349, 736723618773, 5046774983235, 34636814325087, 238114193665451, 1639378334244867, 11301978856210543, 78010917772099207, 539055832175992119
OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1179 (first 101 terms from Kent Mei)
FORMULA
a(n) = [(x*y)^n] 1/(1-x-y-x*y-x*y^2-x^2*y). - Alois P. Heinz, Dec 09 2020
MAPLE
a:= proc(n) local t; 1/(1-x-y-x*y-(x*y^2)-(x^2*y));
for t in [x, y] do coeftayl(%, t=0, n) od
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 09 2020
# second Maple program:
b:= proc(l) option remember; `if`(l[2]=0, 1,
add((f-> `if`(f[1]<0, 0, b(f)))(sort(l-h)), h=
[[1, 0], [0, 1], [1$2], [1, 2], [2, 1]]))
end:
a:= n-> b([n$2]):
seq(a(n), n=0..25); # Alois P. Heinz, Dec 09 2020
# third Maple program:
a:= proc(n) option remember; `if`(n<3, [1, 3, 17][n+1],
((6*n-3)*a(n-1)+(7*n-7)*a(n-2)+(4*n-6)*a(n-3))/n)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 09 2020
MATHEMATICA
b[l_] := b[l] = If[l[[2]] == 0, 1,
Sum[Function[f, If[f[[1]] < 0, 0, b[f]]][Sort[l - h]], {h,
{{1, 0}, {0, 1}, {1, 1}, {1, 2}, {2, 1}}}]];
a[n_] := b[{n, n}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 30 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Kent Mei, Dec 08 2020
STATUS
approved