login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338576
a(n) = n * pod(n) where pod(n) = the product of divisors of n (A007955).
1
1, 4, 9, 32, 25, 216, 49, 512, 243, 1000, 121, 20736, 169, 2744, 3375, 16384, 289, 104976, 361, 160000, 9261, 10648, 529, 7962624, 3125, 17576, 19683, 614656, 841, 24300000, 961, 1048576, 35937, 39304, 42875, 362797056, 1369, 54872, 59319, 102400000, 1681
OFFSET
1,2
FORMULA
a(n) = n * A007955(n) = n^2 * A007956(n).
a(n) = lcm(n, pod(n)) * gcd(n, pod(n)).
a(p) = p^2 for p = primes (A000040).
EXAMPLE
a(6) = 6 * pod(6) = 6 * 36 = 216.
MATHEMATICA
a[n_] := n^(1 + DivisorSigma[0, n]/2); Array[a, 50] (* Amiram Eldar, Nov 03 2020 *)
PROG
(Magma) [n * &*Divisors(n): n in [1..100]]
(PARI) a(n) = n*vecprod(divisors(n)); \\ Michel Marcus, Nov 03 2020
(Python)
from math import isqrt
from sympy import divisor_count
def A338576(n): return (isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2+1) # Chai Wah Wu, Jun 25 2022
CROSSREFS
Cf. A007955 (pod(n)), A007956 (pod(n) / n).
Similar sequences: A038040 (n * tau(n)), A064987 (n * sigma(n)).
Cf. A174935 (partial sums of a(n)).
Sequence in context: A361987 A071378 A053192 * A270618 A270634 A324020
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Nov 03 2020
STATUS
approved